K. M. Francisco, S. T. Allam, A. K. Caldona, M. D. De Jesus, N. Lubaton, S. Sandoval, I. Baylon, C. Tugade
{"title":"使用疏水性二氧化硅气凝胶和葡萄籽提取物制作防晒配方的效果","authors":"K. M. Francisco, S. T. Allam, A. K. Caldona, M. D. De Jesus, N. Lubaton, S. Sandoval, I. Baylon, C. Tugade","doi":"10.1088/1755-1315/1372/1/012077","DOIUrl":null,"url":null,"abstract":"\n Wearing sunscreen products protects human skin from the damaging effects of ultraviolet radiation from the sun. An experimental study was conducted to evaluate the effectiveness of utilizing hydrophobic silica aerogel and grape seed extract as additional raw materials in creating a sunscreen formula. This study aims to evaluate the acceptability of the sunscreen formulation in terms of determining its sun protection factor using UV-vis spectrophotometry, ability to remain on the surface using water resistance testing, and shelf life using a stability chamber. The methodology begins with obtaining a modified hydrophobic silica aerogel classified as cosmetic grade. The sunscreen formulation has a combination of 2 wt. % of hydrophobic silica aerogel, 3 wt.% of grape seed oil, and other ingredients using thermal procedures. The results demonstrated that the addition of hydrophobic silica aerogel and grape seed extract in sunscreen formulation exhibits satisfactory UV protection attaining an SPF value of 28.17073 which indicates a medium sun protection factor according to the standardized category of SPF values. On the contrary, the sunscreen without the active ingredients has an SPF value of 4.762. Additionally, both sunscreen’s water resistance was assessed by testing a total of 60 minutes in both tap water and salt water. The findings showed that both samples of sunscreens in tap water were more resistant compared to saltwater. Furthermore, the sunscreen with hydrophobic silica aerogel and grape seed extract stayed intact and did not dissolve in tap water after a 40-minute exposure time, but it did gradually disintegrate after 20 minutes in salt water since salt water has a higher density than tap water. In stability testing of both sunscreen formulations, the results revealed that the moisture content of the sunscreen formulation with hydrophobic silica aerogel and grape seed extract does not exceed 10% which indicates a low presence of oil. Hence, it proves its stability under the controlled conditions of 40°C and 75% relative humidity examined over one (1) month since it had a high moisture content of 78.98% obtained using the gravimetric method. For the sunscreen without these ingredients, the total moisture content under the same conditions and method is 29.07%. Thus, it indicates a high presence of oil and does not attain the standard moisture content for sunscreens. Overall, the evaluated performance of adding the hydrophobic silica aerogel and grape seed extract to the sunscreen formulation ensures its efficacy regarding its SPF, water resistance, and shelf life.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effectiveness of using hydrophobic silica aerogel and grape seed extract in creating a sunscreen formula\",\"authors\":\"K. M. Francisco, S. T. Allam, A. K. Caldona, M. D. De Jesus, N. Lubaton, S. Sandoval, I. Baylon, C. Tugade\",\"doi\":\"10.1088/1755-1315/1372/1/012077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Wearing sunscreen products protects human skin from the damaging effects of ultraviolet radiation from the sun. An experimental study was conducted to evaluate the effectiveness of utilizing hydrophobic silica aerogel and grape seed extract as additional raw materials in creating a sunscreen formula. This study aims to evaluate the acceptability of the sunscreen formulation in terms of determining its sun protection factor using UV-vis spectrophotometry, ability to remain on the surface using water resistance testing, and shelf life using a stability chamber. The methodology begins with obtaining a modified hydrophobic silica aerogel classified as cosmetic grade. The sunscreen formulation has a combination of 2 wt. % of hydrophobic silica aerogel, 3 wt.% of grape seed oil, and other ingredients using thermal procedures. The results demonstrated that the addition of hydrophobic silica aerogel and grape seed extract in sunscreen formulation exhibits satisfactory UV protection attaining an SPF value of 28.17073 which indicates a medium sun protection factor according to the standardized category of SPF values. On the contrary, the sunscreen without the active ingredients has an SPF value of 4.762. Additionally, both sunscreen’s water resistance was assessed by testing a total of 60 minutes in both tap water and salt water. The findings showed that both samples of sunscreens in tap water were more resistant compared to saltwater. Furthermore, the sunscreen with hydrophobic silica aerogel and grape seed extract stayed intact and did not dissolve in tap water after a 40-minute exposure time, but it did gradually disintegrate after 20 minutes in salt water since salt water has a higher density than tap water. In stability testing of both sunscreen formulations, the results revealed that the moisture content of the sunscreen formulation with hydrophobic silica aerogel and grape seed extract does not exceed 10% which indicates a low presence of oil. Hence, it proves its stability under the controlled conditions of 40°C and 75% relative humidity examined over one (1) month since it had a high moisture content of 78.98% obtained using the gravimetric method. For the sunscreen without these ingredients, the total moisture content under the same conditions and method is 29.07%. Thus, it indicates a high presence of oil and does not attain the standard moisture content for sunscreens. Overall, the evaluated performance of adding the hydrophobic silica aerogel and grape seed extract to the sunscreen formulation ensures its efficacy regarding its SPF, water resistance, and shelf life.\",\"PeriodicalId\":506254,\"journal\":{\"name\":\"IOP Conference Series: Earth and Environmental Science\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Earth and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1755-1315/1372/1/012077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effectiveness of using hydrophobic silica aerogel and grape seed extract in creating a sunscreen formula
Wearing sunscreen products protects human skin from the damaging effects of ultraviolet radiation from the sun. An experimental study was conducted to evaluate the effectiveness of utilizing hydrophobic silica aerogel and grape seed extract as additional raw materials in creating a sunscreen formula. This study aims to evaluate the acceptability of the sunscreen formulation in terms of determining its sun protection factor using UV-vis spectrophotometry, ability to remain on the surface using water resistance testing, and shelf life using a stability chamber. The methodology begins with obtaining a modified hydrophobic silica aerogel classified as cosmetic grade. The sunscreen formulation has a combination of 2 wt. % of hydrophobic silica aerogel, 3 wt.% of grape seed oil, and other ingredients using thermal procedures. The results demonstrated that the addition of hydrophobic silica aerogel and grape seed extract in sunscreen formulation exhibits satisfactory UV protection attaining an SPF value of 28.17073 which indicates a medium sun protection factor according to the standardized category of SPF values. On the contrary, the sunscreen without the active ingredients has an SPF value of 4.762. Additionally, both sunscreen’s water resistance was assessed by testing a total of 60 minutes in both tap water and salt water. The findings showed that both samples of sunscreens in tap water were more resistant compared to saltwater. Furthermore, the sunscreen with hydrophobic silica aerogel and grape seed extract stayed intact and did not dissolve in tap water after a 40-minute exposure time, but it did gradually disintegrate after 20 minutes in salt water since salt water has a higher density than tap water. In stability testing of both sunscreen formulations, the results revealed that the moisture content of the sunscreen formulation with hydrophobic silica aerogel and grape seed extract does not exceed 10% which indicates a low presence of oil. Hence, it proves its stability under the controlled conditions of 40°C and 75% relative humidity examined over one (1) month since it had a high moisture content of 78.98% obtained using the gravimetric method. For the sunscreen without these ingredients, the total moisture content under the same conditions and method is 29.07%. Thus, it indicates a high presence of oil and does not attain the standard moisture content for sunscreens. Overall, the evaluated performance of adding the hydrophobic silica aerogel and grape seed extract to the sunscreen formulation ensures its efficacy regarding its SPF, water resistance, and shelf life.