Mikell Warms , Kristopher B. Karnauskas , Dhrubajyoti Samanta
{"title":"高分辨率模式和观测数据中加拉帕戈斯群岛附近海洋温度和环流的相互比较","authors":"Mikell Warms , Kristopher B. Karnauskas , Dhrubajyoti Samanta","doi":"10.1016/j.pocean.2024.103301","DOIUrl":null,"url":null,"abstract":"<div><p>The mean structure and variability of the Equatorial Undercurrent (EUC) have important implications for upwelling, sea surface temperature (SST), and productivity in the ecologically vital Galápagos Cold Pool. Historically, global coupled climate model simulations have exhibited considerable biases in their simulation of the EUC due to the requirement of relatively high spatial resolution to represent its dynamics. Particularly in the eastern equatorial Pacific, models must also adequately resolve important topographic features to accurately simulate the regional circulation. Here, we examine the extent to which a high-resolution configuration of the NCAR Community Earth System Model (CESM) and a suite of models from the High-Resolution Model Intercomparison project (HighResMIP) adequately represent the regional ocean circulation and other important climatological features of the eastern equatorial Pacific such as the EUC and the associated temperature patterns defining the cold tongue/Galápagos Cold Pool complex. Comparisons with satellite SST and <em>in situ</em> velocity observations, and a high-resolution ocean reanalysis product, illustrate that the high-resolution configuration of the CESM captures many key aspects of the SST field and EUC uniquely well, including its seasonal-to-interannual variability in the eastern equatorial Pacific. Specific strengths and biases of this model with direct comparison to the HighResMIP ensemble are discussed in detail, along with the potential for application of these models to interdisciplinary research topics such as projecting climate change impacts on marine ecosystems.</p></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":"227 ","pages":"Article 103301"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intercomparison of ocean temperature and circulation near the Galápagos islands in high-resolution models and observations\",\"authors\":\"Mikell Warms , Kristopher B. Karnauskas , Dhrubajyoti Samanta\",\"doi\":\"10.1016/j.pocean.2024.103301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The mean structure and variability of the Equatorial Undercurrent (EUC) have important implications for upwelling, sea surface temperature (SST), and productivity in the ecologically vital Galápagos Cold Pool. Historically, global coupled climate model simulations have exhibited considerable biases in their simulation of the EUC due to the requirement of relatively high spatial resolution to represent its dynamics. Particularly in the eastern equatorial Pacific, models must also adequately resolve important topographic features to accurately simulate the regional circulation. Here, we examine the extent to which a high-resolution configuration of the NCAR Community Earth System Model (CESM) and a suite of models from the High-Resolution Model Intercomparison project (HighResMIP) adequately represent the regional ocean circulation and other important climatological features of the eastern equatorial Pacific such as the EUC and the associated temperature patterns defining the cold tongue/Galápagos Cold Pool complex. Comparisons with satellite SST and <em>in situ</em> velocity observations, and a high-resolution ocean reanalysis product, illustrate that the high-resolution configuration of the CESM captures many key aspects of the SST field and EUC uniquely well, including its seasonal-to-interannual variability in the eastern equatorial Pacific. Specific strengths and biases of this model with direct comparison to the HighResMIP ensemble are discussed in detail, along with the potential for application of these models to interdisciplinary research topics such as projecting climate change impacts on marine ecosystems.</p></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":\"227 \",\"pages\":\"Article 103301\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124001071\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001071","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Intercomparison of ocean temperature and circulation near the Galápagos islands in high-resolution models and observations
The mean structure and variability of the Equatorial Undercurrent (EUC) have important implications for upwelling, sea surface temperature (SST), and productivity in the ecologically vital Galápagos Cold Pool. Historically, global coupled climate model simulations have exhibited considerable biases in their simulation of the EUC due to the requirement of relatively high spatial resolution to represent its dynamics. Particularly in the eastern equatorial Pacific, models must also adequately resolve important topographic features to accurately simulate the regional circulation. Here, we examine the extent to which a high-resolution configuration of the NCAR Community Earth System Model (CESM) and a suite of models from the High-Resolution Model Intercomparison project (HighResMIP) adequately represent the regional ocean circulation and other important climatological features of the eastern equatorial Pacific such as the EUC and the associated temperature patterns defining the cold tongue/Galápagos Cold Pool complex. Comparisons with satellite SST and in situ velocity observations, and a high-resolution ocean reanalysis product, illustrate that the high-resolution configuration of the CESM captures many key aspects of the SST field and EUC uniquely well, including its seasonal-to-interannual variability in the eastern equatorial Pacific. Specific strengths and biases of this model with direct comparison to the HighResMIP ensemble are discussed in detail, along with the potential for application of these models to interdisciplinary research topics such as projecting climate change impacts on marine ecosystems.
期刊介绍:
Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.