应用大型语言模型实现智能工业自动化

Yuchen Xia, N. Jazdi, M. Weyrich
{"title":"应用大型语言模型实现智能工业自动化","authors":"Yuchen Xia, N. Jazdi, M. Weyrich","doi":"10.17560/atp.v66i6-7.2739","DOIUrl":null,"url":null,"abstract":"This paper explores the transformative potential of Large Language Models (LLMs) in industrial automation, presenting a comprehensive framework for their integration into complex industrial systems. We begin with a theoretical overview of LLMs, elucidating their pivotal capabilities such as interpretation, task automation, and autonomous agent functionality. A generic methodology for integrating LLMs into industrial applications is outlined, explaining how to apply LLM for task-specific applications. Four case studies demonstrate the practical use of LLMs across different industrial environments: transforming unstructured data into structured data as asset administration shell model, improving user interactions with document databases through conversational systems, planning and controlling industrial operations autonomously, and interacting with simulation models to determine the parametrization of the process. The studies illustrate the ability of LLMs to manage versatile tasks and interface with digital twins and automation systems, indicating that efficiency and productivity improvements can be achieved by strategically deploying LLM technologies in industrial settings.","PeriodicalId":263160,"journal":{"name":"atp magazin","volume":"120 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Large Language Models for Intelligent Industrial Automation\",\"authors\":\"Yuchen Xia, N. Jazdi, M. Weyrich\",\"doi\":\"10.17560/atp.v66i6-7.2739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the transformative potential of Large Language Models (LLMs) in industrial automation, presenting a comprehensive framework for their integration into complex industrial systems. We begin with a theoretical overview of LLMs, elucidating their pivotal capabilities such as interpretation, task automation, and autonomous agent functionality. A generic methodology for integrating LLMs into industrial applications is outlined, explaining how to apply LLM for task-specific applications. Four case studies demonstrate the practical use of LLMs across different industrial environments: transforming unstructured data into structured data as asset administration shell model, improving user interactions with document databases through conversational systems, planning and controlling industrial operations autonomously, and interacting with simulation models to determine the parametrization of the process. The studies illustrate the ability of LLMs to manage versatile tasks and interface with digital twins and automation systems, indicating that efficiency and productivity improvements can be achieved by strategically deploying LLM technologies in industrial settings.\",\"PeriodicalId\":263160,\"journal\":{\"name\":\"atp magazin\",\"volume\":\"120 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"atp magazin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17560/atp.v66i6-7.2739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"atp magazin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17560/atp.v66i6-7.2739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了大型语言模型(LLM)在工业自动化领域的变革潜力,提出了将其集成到复杂工业系统中的综合框架。我们首先对 LLM 进行了理论概述,阐明了其关键能力,如解释、任务自动化和自主代理功能。我们概述了将 LLM 集成到工业应用中的通用方法,解释了如何将 LLM 应用于特定任务的应用。四项案例研究展示了 LLM 在不同工业环境中的实际应用:将非结构化数据转化为结构化数据作为资产管理外壳模型、通过对话系统改善用户与文档数据库的交互、自主规划和控制工业操作,以及与仿真模型交互以确定流程参数。这些研究表明,LLM 能够管理多种任务,并与数字孪生和自动化系统对接,这表明在工业环境中战略性地部署 LLM 技术可以提高效率和生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Large Language Models for Intelligent Industrial Automation
This paper explores the transformative potential of Large Language Models (LLMs) in industrial automation, presenting a comprehensive framework for their integration into complex industrial systems. We begin with a theoretical overview of LLMs, elucidating their pivotal capabilities such as interpretation, task automation, and autonomous agent functionality. A generic methodology for integrating LLMs into industrial applications is outlined, explaining how to apply LLM for task-specific applications. Four case studies demonstrate the practical use of LLMs across different industrial environments: transforming unstructured data into structured data as asset administration shell model, improving user interactions with document databases through conversational systems, planning and controlling industrial operations autonomously, and interacting with simulation models to determine the parametrization of the process. The studies illustrate the ability of LLMs to manage versatile tasks and interface with digital twins and automation systems, indicating that efficiency and productivity improvements can be achieved by strategically deploying LLM technologies in industrial settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large Language Models in der Robotik From Data to Design Engineering in der Prozessindustrie mit der Verwaltungsschale Applying Large Language Models for Intelligent Industrial Automation Energieeffizienterer Betrieb modularer Anlagen
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1