Y H Liu, W. C. Yan, C J Yang, Y Zhang, C. W. He, X Cui, L W Jin
{"title":"带有蒸发冷却通风腔的光伏组件的热性能","authors":"Y H Liu, W. C. Yan, C J Yang, Y Zhang, C. W. He, X Cui, L W Jin","doi":"10.1088/1755-1315/1372/1/012061","DOIUrl":null,"url":null,"abstract":"\n Energy is indispensable in modern life, and solar photovoltaic technology stands out for its substantial advantages. However, the current conversion rate remains suboptimal, ranging from 15% to 20%. Compounding this, a portion of solar energy undergoes conversion into thermal energy, resulting in an elevation of the PV (photovoltaic) module’s temperature and a subsequent reduction in electricity generation efficiency. In response to this challenge, a solution was conceived—a design featuring an evaporative cooling ventilated cavity crafted to alleviate the operating temperature of the photovoltaic module. This innovative system integrates a photovoltaic facade with an evaporative cooling ventilation cavity, encompassing crucial components such as solar photovoltaic panels, an evaporative cooling layer, and a ventilated cavity equipped with thermal regulation. An experimental system was meticulously developed. The results illuminate the system’s efficacy in temperature reduction: approximately 5°C for the PV back sheet, 5°C for the cavity back sheet, and 5.2°C inside the cavity. Furthermore, the system achieves a noteworthy average operating temperature reduction of about 14.1%, 20.2%, and 20.4%, respectively. These findings underscore the substantial impact of the evaporative cooling system on regulating and enhancing the thermal performance of PV modules.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"51 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal performance of the photovoltaic module with evaporative cooling ventilated cavity\",\"authors\":\"Y H Liu, W. C. Yan, C J Yang, Y Zhang, C. W. He, X Cui, L W Jin\",\"doi\":\"10.1088/1755-1315/1372/1/012061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Energy is indispensable in modern life, and solar photovoltaic technology stands out for its substantial advantages. However, the current conversion rate remains suboptimal, ranging from 15% to 20%. Compounding this, a portion of solar energy undergoes conversion into thermal energy, resulting in an elevation of the PV (photovoltaic) module’s temperature and a subsequent reduction in electricity generation efficiency. In response to this challenge, a solution was conceived—a design featuring an evaporative cooling ventilated cavity crafted to alleviate the operating temperature of the photovoltaic module. This innovative system integrates a photovoltaic facade with an evaporative cooling ventilation cavity, encompassing crucial components such as solar photovoltaic panels, an evaporative cooling layer, and a ventilated cavity equipped with thermal regulation. An experimental system was meticulously developed. The results illuminate the system’s efficacy in temperature reduction: approximately 5°C for the PV back sheet, 5°C for the cavity back sheet, and 5.2°C inside the cavity. Furthermore, the system achieves a noteworthy average operating temperature reduction of about 14.1%, 20.2%, and 20.4%, respectively. These findings underscore the substantial impact of the evaporative cooling system on regulating and enhancing the thermal performance of PV modules.\",\"PeriodicalId\":506254,\"journal\":{\"name\":\"IOP Conference Series: Earth and Environmental Science\",\"volume\":\"51 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Earth and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1755-1315/1372/1/012061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermal performance of the photovoltaic module with evaporative cooling ventilated cavity
Energy is indispensable in modern life, and solar photovoltaic technology stands out for its substantial advantages. However, the current conversion rate remains suboptimal, ranging from 15% to 20%. Compounding this, a portion of solar energy undergoes conversion into thermal energy, resulting in an elevation of the PV (photovoltaic) module’s temperature and a subsequent reduction in electricity generation efficiency. In response to this challenge, a solution was conceived—a design featuring an evaporative cooling ventilated cavity crafted to alleviate the operating temperature of the photovoltaic module. This innovative system integrates a photovoltaic facade with an evaporative cooling ventilation cavity, encompassing crucial components such as solar photovoltaic panels, an evaporative cooling layer, and a ventilated cavity equipped with thermal regulation. An experimental system was meticulously developed. The results illuminate the system’s efficacy in temperature reduction: approximately 5°C for the PV back sheet, 5°C for the cavity back sheet, and 5.2°C inside the cavity. Furthermore, the system achieves a noteworthy average operating temperature reduction of about 14.1%, 20.2%, and 20.4%, respectively. These findings underscore the substantial impact of the evaporative cooling system on regulating and enhancing the thermal performance of PV modules.