基于毛细管换热器的海底隧道渗流海水源热泵系统:案例研究

F J Zhang, L Zhang, C Li, S J Gao
{"title":"基于毛细管换热器的海底隧道渗流海水源热泵系统:案例研究","authors":"F J Zhang, L Zhang, C Li, S J Gao","doi":"10.1088/1755-1315/1372/1/012074","DOIUrl":null,"url":null,"abstract":"\n The discharge of seepage water from undersea tunnel structures, often treated as wastewater, inherently carries a substantial reservoir of untapped low-grade thermal energy. Unfortunately, comprehensive investigations into harnessing this latent potential remain notably limited. This study introduced an innovative strategy through the design of an undersea tunnel seepage seawater source heat pump system. Distinguished by the integration of a capillary front-end heat exchanger, this system aimed to effectively exploit the frequently disregarded low-grade thermal energy present in the seepage water of undersea tunnel structures. The seawater seepage from the tunnel is transported to the car park at the tunnel entrance, and a seawater energy pool is constructed by storing seawater in its underground space. The use of capillary network placed in the energy pool in the front heat exchanger, water source heat pump units, circulating water pumps and fan coil end device composed of underground undersea tunnel seepage seawater source heat pump system for the building heating and cooling. Furthermore, a comparative assessment was conducted, contrasting this novel system with the traditional air-conditioning setup that utilizes chillers and gas boilers as cooling and heating sources. The aim was to evaluate its capacity for energy conservation and emission reduction. The findings from the study strongly affirmed the viability of the proposed seepage seawater source heat pump system within undersea tunnels. It boasted the potential to achieve annual savings of 53.55 tce, highlighting a noteworthy energy-saving rate of 21.2%. Concurrently, reductions in CO2, SO2, and particulate emissions amounted to 132.28 t/a, 1.07 t/a, and 0.54 t/a, respectively. This study not only stands as a reference for the strategic utilization of seepage seawater from undersea tunnel structures, prioritizing energy conservation and emission reduction, but also pioneers innovative approaches toward resource optimization and environmental sustainability, meeting the inherent needs of carbon peaking and carbon neutrality goals.","PeriodicalId":506254,"journal":{"name":"IOP Conference Series: Earth and Environmental Science","volume":"61 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seawater source heat pump system based on capillary heat exchanger for seepage in submarine tunnel: a case study\",\"authors\":\"F J Zhang, L Zhang, C Li, S J Gao\",\"doi\":\"10.1088/1755-1315/1372/1/012074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The discharge of seepage water from undersea tunnel structures, often treated as wastewater, inherently carries a substantial reservoir of untapped low-grade thermal energy. Unfortunately, comprehensive investigations into harnessing this latent potential remain notably limited. This study introduced an innovative strategy through the design of an undersea tunnel seepage seawater source heat pump system. Distinguished by the integration of a capillary front-end heat exchanger, this system aimed to effectively exploit the frequently disregarded low-grade thermal energy present in the seepage water of undersea tunnel structures. The seawater seepage from the tunnel is transported to the car park at the tunnel entrance, and a seawater energy pool is constructed by storing seawater in its underground space. The use of capillary network placed in the energy pool in the front heat exchanger, water source heat pump units, circulating water pumps and fan coil end device composed of underground undersea tunnel seepage seawater source heat pump system for the building heating and cooling. Furthermore, a comparative assessment was conducted, contrasting this novel system with the traditional air-conditioning setup that utilizes chillers and gas boilers as cooling and heating sources. The aim was to evaluate its capacity for energy conservation and emission reduction. The findings from the study strongly affirmed the viability of the proposed seepage seawater source heat pump system within undersea tunnels. It boasted the potential to achieve annual savings of 53.55 tce, highlighting a noteworthy energy-saving rate of 21.2%. Concurrently, reductions in CO2, SO2, and particulate emissions amounted to 132.28 t/a, 1.07 t/a, and 0.54 t/a, respectively. This study not only stands as a reference for the strategic utilization of seepage seawater from undersea tunnel structures, prioritizing energy conservation and emission reduction, but also pioneers innovative approaches toward resource optimization and environmental sustainability, meeting the inherent needs of carbon peaking and carbon neutrality goals.\",\"PeriodicalId\":506254,\"journal\":{\"name\":\"IOP Conference Series: Earth and Environmental Science\",\"volume\":\"61 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IOP Conference Series: Earth and Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1755-1315/1372/1/012074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IOP Conference Series: Earth and Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1755-1315/1372/1/012074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海底隧道结构排放的渗水通常作为废水处理,本身就蕴藏着大量尚未开发的低品位热能。遗憾的是,对利用这一潜在能量的全面研究仍然十分有限。本研究通过设计海底隧道渗流海水源热泵系统,引入了一种创新策略。该系统集成了毛细管前端热交换器,旨在有效利用海底隧道结构渗水中经常被忽视的低品位热能。隧道渗出的海水被输送到隧道入口处的停车场,并通过在其地下空间储存海水来构建海水能源池。利用放置在能量池中的毛细管网前端换热器、水源热泵机组、循环水泵和风机盘管末端装置组成海底隧道地下渗流海水源热泵系统,为建筑物供热制冷。此外,还进行了比较评估,将这种新型系统与利用冷水机组和燃气锅炉作为冷热源的传统空调装置进行了对比。目的是评估其节能减排能力。研究结果有力地证实了拟议的海底隧道渗海水源热泵系统的可行性。该系统每年可节约能源 53.55 吨,节能率高达 21.2%。同时,二氧化碳、二氧化硫和颗粒物排放量分别减少了 132.28 吨/年、1.07 吨/年和 0.54 吨/年。这项研究不仅为海底隧道结构渗漏海水的战略利用、节能减排优先提供了参考,而且开创了资源优化和环境可持续发展的创新方法,满足了碳调峰和碳中和目标的内在需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seawater source heat pump system based on capillary heat exchanger for seepage in submarine tunnel: a case study
The discharge of seepage water from undersea tunnel structures, often treated as wastewater, inherently carries a substantial reservoir of untapped low-grade thermal energy. Unfortunately, comprehensive investigations into harnessing this latent potential remain notably limited. This study introduced an innovative strategy through the design of an undersea tunnel seepage seawater source heat pump system. Distinguished by the integration of a capillary front-end heat exchanger, this system aimed to effectively exploit the frequently disregarded low-grade thermal energy present in the seepage water of undersea tunnel structures. The seawater seepage from the tunnel is transported to the car park at the tunnel entrance, and a seawater energy pool is constructed by storing seawater in its underground space. The use of capillary network placed in the energy pool in the front heat exchanger, water source heat pump units, circulating water pumps and fan coil end device composed of underground undersea tunnel seepage seawater source heat pump system for the building heating and cooling. Furthermore, a comparative assessment was conducted, contrasting this novel system with the traditional air-conditioning setup that utilizes chillers and gas boilers as cooling and heating sources. The aim was to evaluate its capacity for energy conservation and emission reduction. The findings from the study strongly affirmed the viability of the proposed seepage seawater source heat pump system within undersea tunnels. It boasted the potential to achieve annual savings of 53.55 tce, highlighting a noteworthy energy-saving rate of 21.2%. Concurrently, reductions in CO2, SO2, and particulate emissions amounted to 132.28 t/a, 1.07 t/a, and 0.54 t/a, respectively. This study not only stands as a reference for the strategic utilization of seepage seawater from undersea tunnel structures, prioritizing energy conservation and emission reduction, but also pioneers innovative approaches toward resource optimization and environmental sustainability, meeting the inherent needs of carbon peaking and carbon neutrality goals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation on solidification process of molten salt-based phase change material as thermal energy storage medium for application in Stirling engine Hydrogen adsorption on titanium-decorated carbyne C12 ring: a DFT study Experimental investigation into the effects of endplate designs for a Savonius turbine Development of zwitterion-functionalized graphene oxide/polyethersulfone nanocomposite membrane and fouling evaluation using solutes of varying charges Wind resource assessment for turbine class identification in Bayanzhaganxiang, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1