旋转对用于小型风力涡轮机的三相自励磁感应发电机实现恒压的影响

Ahmad Syuhada, Tarmizi Tarmizi, Akhyar Akhyar
{"title":"旋转对用于小型风力涡轮机的三相自励磁感应发电机实现恒压的影响","authors":"Ahmad Syuhada, Tarmizi Tarmizi, Akhyar Akhyar","doi":"10.30811/jpl.v22i3.5279","DOIUrl":null,"url":null,"abstract":"Three-phase Self-Excited Induction Generators (SEIGs) are commonly employed for electricity generation in remote or isolated areas. SEIGs are preferred in such regions due to their ability to create a magnetic field by adding a capacitor to one of their terminals. Nevertheless, a significant challenge in utilizing SEIGs is maintaining a consistent output voltage in the presence of load fluctuations. This study aims to investigate the impact of generator rotation on the SEIG's output voltage and determine the optimal rotation speed required for achieving a stable output voltage. Ensuring stable voltage regulation is crucial to guarantee the proper functioning of all loads connected to the SEIG. Furthermore, operating the SEIG in parallel with other generators is advantageous. The methodology employed in this study involves varying the load supplied by the SEIG at different capacitor values. Unwanted voltage variations occur due to load fluctuations within a generating system or SEIG. Adjustments to the generator's rotation speed are made to uphold a uniform voltage level. The variables considered in this study include the generator's rotation speed, capacitor size, and load fluctuations. Simulation results demonstrate that the SEIG's output voltage is affected by the generator's rotation speed, and maintaining a consistent voltage necessitates appropriate adjustments to capacitor values and generator speed. This research enhances understanding of SEIG characteristics and offers guidance on effective settings for maintaining a stable output voltage at various generator rotation speeds. Future research can focus on practically implementing these findings to enhance the performance of SEIGs in real-world applications","PeriodicalId":166128,"journal":{"name":"Jurnal POLIMESIN","volume":"117 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of rotation on achieving constant voltage in three-phase self-excited induction generator for small scale wind turbines application\",\"authors\":\"Ahmad Syuhada, Tarmizi Tarmizi, Akhyar Akhyar\",\"doi\":\"10.30811/jpl.v22i3.5279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-phase Self-Excited Induction Generators (SEIGs) are commonly employed for electricity generation in remote or isolated areas. SEIGs are preferred in such regions due to their ability to create a magnetic field by adding a capacitor to one of their terminals. Nevertheless, a significant challenge in utilizing SEIGs is maintaining a consistent output voltage in the presence of load fluctuations. This study aims to investigate the impact of generator rotation on the SEIG's output voltage and determine the optimal rotation speed required for achieving a stable output voltage. Ensuring stable voltage regulation is crucial to guarantee the proper functioning of all loads connected to the SEIG. Furthermore, operating the SEIG in parallel with other generators is advantageous. The methodology employed in this study involves varying the load supplied by the SEIG at different capacitor values. Unwanted voltage variations occur due to load fluctuations within a generating system or SEIG. Adjustments to the generator's rotation speed are made to uphold a uniform voltage level. The variables considered in this study include the generator's rotation speed, capacitor size, and load fluctuations. Simulation results demonstrate that the SEIG's output voltage is affected by the generator's rotation speed, and maintaining a consistent voltage necessitates appropriate adjustments to capacitor values and generator speed. This research enhances understanding of SEIG characteristics and offers guidance on effective settings for maintaining a stable output voltage at various generator rotation speeds. Future research can focus on practically implementing these findings to enhance the performance of SEIGs in real-world applications\",\"PeriodicalId\":166128,\"journal\":{\"name\":\"Jurnal POLIMESIN\",\"volume\":\"117 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal POLIMESIN\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30811/jpl.v22i3.5279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal POLIMESIN","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30811/jpl.v22i3.5279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三相自激式感应发电机(SEIG)通常用于偏远或孤立地区的发电。由于 SEIG 能够通过在其中一个端子上添加电容器来产生磁场,因此在这些地区受到青睐。然而,利用 SEIG 的一个重大挑战是在负载波动的情况下保持稳定的输出电压。本研究旨在调查发电机旋转对 SEIG 输出电压的影响,并确定实现稳定输出电压所需的最佳旋转速度。确保稳定的电压调节对于保证连接到 SEIG 的所有负载的正常运行至关重要。此外,SEIG 与其他发电机并联运行也很有利。本研究采用的方法包括在不同的电容器值下改变 SEIG 提供的负载。由于发电系统或 SEIG 内的负载波动,会产生不必要的电压变化。对发电机的转速进行调整,以维持统一的电压水平。本研究考虑的变量包括发电机的转速、电容器的大小和负载波动。仿真结果表明,SEIG 的输出电压受发电机转速的影响,而要保持稳定的电压,就必须对电容器值和发电机转速进行适当调整。这项研究加深了对 SEIG 特性的了解,并为在不同发电机转速下保持稳定输出电压的有效设置提供了指导。未来的研究可侧重于实际应用这些发现,以提高 SEIG 在实际应用中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of rotation on achieving constant voltage in three-phase self-excited induction generator for small scale wind turbines application
Three-phase Self-Excited Induction Generators (SEIGs) are commonly employed for electricity generation in remote or isolated areas. SEIGs are preferred in such regions due to their ability to create a magnetic field by adding a capacitor to one of their terminals. Nevertheless, a significant challenge in utilizing SEIGs is maintaining a consistent output voltage in the presence of load fluctuations. This study aims to investigate the impact of generator rotation on the SEIG's output voltage and determine the optimal rotation speed required for achieving a stable output voltage. Ensuring stable voltage regulation is crucial to guarantee the proper functioning of all loads connected to the SEIG. Furthermore, operating the SEIG in parallel with other generators is advantageous. The methodology employed in this study involves varying the load supplied by the SEIG at different capacitor values. Unwanted voltage variations occur due to load fluctuations within a generating system or SEIG. Adjustments to the generator's rotation speed are made to uphold a uniform voltage level. The variables considered in this study include the generator's rotation speed, capacitor size, and load fluctuations. Simulation results demonstrate that the SEIG's output voltage is affected by the generator's rotation speed, and maintaining a consistent voltage necessitates appropriate adjustments to capacitor values and generator speed. This research enhances understanding of SEIG characteristics and offers guidance on effective settings for maintaining a stable output voltage at various generator rotation speeds. Future research can focus on practically implementing these findings to enhance the performance of SEIGs in real-world applications
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of CNC milling parameters using the response surface method for aluminum 6061 Performance materials with variations of tractor drive wheel fin angle and low-cost manufacturing analysis Improving safety design for gas pipeline installation via horizontal directional drilling: a pipe stress analysis approach Design and manufacturing of Welded Vacuum Testing (WVT) tool Effects of modified intake surface to gasoline engine performance with the use of LPG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1