甲醇蒸汽介导的腐蚀工程,实现高熵镍铁层状双氢氧化物的超稳定氧进化

IF 9.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chinese Chemical Letters Pub Date : 2024-07-10 DOI:10.1016/j.cclet.2024.110232
Jinqiang Gao , Haifeng Yuan , Xinjuan Du , Feng Dong , Yu Zhou , Shengnan Na , Yanpeng Chen , Mingyu Hu , Mei Hong , Shihe Yang
{"title":"甲醇蒸汽介导的腐蚀工程,实现高熵镍铁层状双氢氧化物的超稳定氧进化","authors":"Jinqiang Gao ,&nbsp;Haifeng Yuan ,&nbsp;Xinjuan Du ,&nbsp;Feng Dong ,&nbsp;Yu Zhou ,&nbsp;Shengnan Na ,&nbsp;Yanpeng Chen ,&nbsp;Mingyu Hu ,&nbsp;Mei Hong ,&nbsp;Shihe Yang","doi":"10.1016/j.cclet.2024.110232","DOIUrl":null,"url":null,"abstract":"<div><div>Rational design of viable routes to obtain efficient and stable oxygen evolution reaction (OER) electrocatalysts remains challenging, especially under industrial conditions. Here, we provide a solvent-steam assisted corrosion engineering strategy to directly fabricate high-entropy NiFe-LDH with spatially resolved structural order. Ammonium fluoride in methanol steam enables the formation of nanosheets while Fe<sup>3+</sup> effectively enhances their adhesion to the semi-sacrificial nickel-iron foam (NFF), thereby conjuring up a NiFe-LDH@NFF catalyst that exhibits remarkable adaptability to robust electrochemical activation yet with excellent stability. Comprehensive measurements reveal the <em>in-situ</em> formation of high-valance metal oxyhydroxide and the enhancement of adsorption-desorption process. Under the industrial condition (6 mol/L KOH, 60 °C), the NiFe-LDH@NFF exhibits excellent activity of 50 mA/cm<sup>2</sup> at 1.55 V and high durability of over 120 h at 200 mA/cm<sup>2</sup>. We anticipate that the steam assisted strategy could promote the development of efficient non-precious electrocatalysts for hydrogen energy.</div></div>","PeriodicalId":10088,"journal":{"name":"Chinese Chemical Letters","volume":"36 1","pages":"Article 110232"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution\",\"authors\":\"Jinqiang Gao ,&nbsp;Haifeng Yuan ,&nbsp;Xinjuan Du ,&nbsp;Feng Dong ,&nbsp;Yu Zhou ,&nbsp;Shengnan Na ,&nbsp;Yanpeng Chen ,&nbsp;Mingyu Hu ,&nbsp;Mei Hong ,&nbsp;Shihe Yang\",\"doi\":\"10.1016/j.cclet.2024.110232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rational design of viable routes to obtain efficient and stable oxygen evolution reaction (OER) electrocatalysts remains challenging, especially under industrial conditions. Here, we provide a solvent-steam assisted corrosion engineering strategy to directly fabricate high-entropy NiFe-LDH with spatially resolved structural order. Ammonium fluoride in methanol steam enables the formation of nanosheets while Fe<sup>3+</sup> effectively enhances their adhesion to the semi-sacrificial nickel-iron foam (NFF), thereby conjuring up a NiFe-LDH@NFF catalyst that exhibits remarkable adaptability to robust electrochemical activation yet with excellent stability. Comprehensive measurements reveal the <em>in-situ</em> formation of high-valance metal oxyhydroxide and the enhancement of adsorption-desorption process. Under the industrial condition (6 mol/L KOH, 60 °C), the NiFe-LDH@NFF exhibits excellent activity of 50 mA/cm<sup>2</sup> at 1.55 V and high durability of over 120 h at 200 mA/cm<sup>2</sup>. We anticipate that the steam assisted strategy could promote the development of efficient non-precious electrocatalysts for hydrogen energy.</div></div>\",\"PeriodicalId\":10088,\"journal\":{\"name\":\"Chinese Chemical Letters\",\"volume\":\"36 1\",\"pages\":\"Article 110232\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Chemical Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001841724007514\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Chemical Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001841724007514","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合理设计可行的路线以获得高效稳定的氧进化反应(OER)电催化剂仍然具有挑战性,尤其是在工业条件下。在此,我们提供了一种溶剂-蒸汽辅助腐蚀工程策略,可直接制造出具有空间分辨结构秩序的高熵镍铁合金-LDH。甲醇蒸汽中的氟化铵可促进纳米片的形成,而 Fe3+ 则可有效增强纳米片与半牺牲型镍铁泡沫(NFF)的粘附性,从而形成一种 NiFe-LDH@NFF 催化剂,该催化剂对强力电化学活化具有显著的适应性,同时还具有极佳的稳定性。综合测量结果表明,该催化剂在原位形成了高价金属氢氧化物,并增强了吸附-解吸过程。在工业条件(6 mol/L KOH,60 °C)下,NiFe-LDH@NFF 在 1.55 V 时的活性为 50 mA/cm2,在 200 mA/cm2 时的耐久性超过 120 小时。我们预计,蒸汽辅助策略可促进高效非贵金属氢能电催化剂的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methanol steam mediated corrosion engineering towards high-entropy NiFe layered double hydroxide for ultra-stable oxygen evolution
Rational design of viable routes to obtain efficient and stable oxygen evolution reaction (OER) electrocatalysts remains challenging, especially under industrial conditions. Here, we provide a solvent-steam assisted corrosion engineering strategy to directly fabricate high-entropy NiFe-LDH with spatially resolved structural order. Ammonium fluoride in methanol steam enables the formation of nanosheets while Fe3+ effectively enhances their adhesion to the semi-sacrificial nickel-iron foam (NFF), thereby conjuring up a NiFe-LDH@NFF catalyst that exhibits remarkable adaptability to robust electrochemical activation yet with excellent stability. Comprehensive measurements reveal the in-situ formation of high-valance metal oxyhydroxide and the enhancement of adsorption-desorption process. Under the industrial condition (6 mol/L KOH, 60 °C), the NiFe-LDH@NFF exhibits excellent activity of 50 mA/cm2 at 1.55 V and high durability of over 120 h at 200 mA/cm2. We anticipate that the steam assisted strategy could promote the development of efficient non-precious electrocatalysts for hydrogen energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Chemical Letters
Chinese Chemical Letters 化学-化学综合
CiteScore
14.10
自引率
15.40%
发文量
8969
审稿时长
1.6 months
期刊介绍: Chinese Chemical Letters (CCL) (ISSN 1001-8417) was founded in July 1990. The journal publishes preliminary accounts in the whole field of chemistry, including inorganic chemistry, organic chemistry, analytical chemistry, physical chemistry, polymer chemistry, applied chemistry, etc.Chinese Chemical Letters does not accept articles previously published or scheduled to be published. To verify originality, your article may be checked by the originality detection service CrossCheck.
期刊最新文献
Corrigendum to “An overview of polymeric nanomicelles in clinical trials and on the market” [Chinese Chemical Letters 32 (2021) 243-257] Corrigendum to “Ultrasound augmenting injectable chemotaxis hydrogel for articular cartilage repair in osteoarthritis” [Chinese Chemical Letters 32 (2021) 1759-1764] Fluorine-functionalized zirconium-organic cages for efficient photocatalytic oxidation of thioanisole Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor Synergistic regulation of polysulfides shuttle effect and lithium dendrites from cobalt-molybdenum bimetallic carbides (Co-Mo-C) heterostructure for robust Li-S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1