{"title":"针对具有弱线性阻尼项的非线性薛定谔方程的共形结构保留 SVM 方法","authors":"Xin Li , Luming Zhang","doi":"10.1016/j.apnum.2024.06.024","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conformal structure-preserving SVM methods for the nonlinear Schrödinger equation with weakly linear damping term\",\"authors\":\"Xin Li , Luming Zhang\",\"doi\":\"10.1016/j.apnum.2024.06.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424001727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Conformal structure-preserving SVM methods for the nonlinear Schrödinger equation with weakly linear damping term
In this paper, by applying the supplementary variable method (SVM), some high-order, conformal structure-preserving, linearized algorithms are developed for the damped nonlinear Schrödinger equation. We derive the well-determined SVM systems with the conformal properties and they are then equivalent to nonlinear equality constrained optimization problems for computation. The deduced optimization models are discretized by using the Gauss type Runge-Kutta method and the prediction-correction technique in time as well as the Fourier pseudo-spectral method in space. Numerical results and some comparisons between this method and other reported methods are given to favor the suggested method in the overall performance. It is worthwhile to emphasize that the numerical strategy in this work could be extended to other conservative or dissipative system for designing high-order structure-preserving algorithms.