针对复杂动脉模型流动的 GPU 优化多区块多网格沉浸边界法

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Fluids Pub Date : 2024-07-15 DOI:10.1016/j.compfluid.2024.106367
Debajyoti Kumar , Siddharth D. Sharma , Somnath Roy
{"title":"针对复杂动脉模型流动的 GPU 优化多区块多网格沉浸边界法","authors":"Debajyoti Kumar ,&nbsp;Siddharth D. Sharma ,&nbsp;Somnath Roy","doi":"10.1016/j.compfluid.2024.106367","DOIUrl":null,"url":null,"abstract":"<div><p>Immersed boundary method (IBM) is widely used for simulating flow in complex geometries using structured grids. However, this entails a disadvantage when simulating internal flows through curved and bent tubes. The presence of grids outside the fluid domain leads to the wastage of memory and computational overheads. Here, we propose a multi-block-multi-mesh framework to capture the complex geometry using multiple grid blocks fitted close to the body, reducing excess grids. This also has the advantage of using different and non-uniform grid spacing in different blocks. The reduction of the grid enables encompassing bigger caseloads on a single GPU. The solver is accelerated on GPU using OpenACC, compared to sequential CPU simulations, and speedup is presented. The speedup obtained is comparable to that of large multicore systems. The framework is extensively validated for straight artery with axisymmetric stenosis and bileaflet mechanical heart valve with axisymmetric sinus. This framework then models complex arterial flows like stenosed aorta, patient-specific branched aorta, bileaflet mechanical heart valve with Valsalva sinus and aorta, and lastly, patient-specific iliac aortic aneurysm. This framework achieves a significant reduction in GPU memory requirement for complex arterial models, enabling us to perform direct numerical simulation (DNS) of the stenosed aorta and mechanical heart valve cases in a single GPU.</p></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"281 ","pages":"Article 106367"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GPU optimized multi-block-multi-mesh immersed boundary method for flows in complex arterial models\",\"authors\":\"Debajyoti Kumar ,&nbsp;Siddharth D. Sharma ,&nbsp;Somnath Roy\",\"doi\":\"10.1016/j.compfluid.2024.106367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Immersed boundary method (IBM) is widely used for simulating flow in complex geometries using structured grids. However, this entails a disadvantage when simulating internal flows through curved and bent tubes. The presence of grids outside the fluid domain leads to the wastage of memory and computational overheads. Here, we propose a multi-block-multi-mesh framework to capture the complex geometry using multiple grid blocks fitted close to the body, reducing excess grids. This also has the advantage of using different and non-uniform grid spacing in different blocks. The reduction of the grid enables encompassing bigger caseloads on a single GPU. The solver is accelerated on GPU using OpenACC, compared to sequential CPU simulations, and speedup is presented. The speedup obtained is comparable to that of large multicore systems. The framework is extensively validated for straight artery with axisymmetric stenosis and bileaflet mechanical heart valve with axisymmetric sinus. This framework then models complex arterial flows like stenosed aorta, patient-specific branched aorta, bileaflet mechanical heart valve with Valsalva sinus and aorta, and lastly, patient-specific iliac aortic aneurysm. This framework achieves a significant reduction in GPU memory requirement for complex arterial models, enabling us to perform direct numerical simulation (DNS) of the stenosed aorta and mechanical heart valve cases in a single GPU.</p></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"281 \",\"pages\":\"Article 106367\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793024001993\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024001993","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

沉浸边界法(IBM)被广泛用于使用结构化网格模拟复杂几何形状中的流动。然而,在模拟通过弯曲管道的内部流动时,这种方法存在缺点。流体域外网格的存在会导致内存浪费和计算开销。在此,我们提出了一种多网格块-多网格框架,利用靠近管体的多个网格块来捕捉复杂的几何形状,从而减少多余的网格。这样做的另一个好处是在不同的网格块中使用不同的非均匀网格间距。网格的减少使单个 GPU 可以处理更大的工作量。在 GPU 上使用 OpenACC 对求解器进行了加速,并与 CPU 的顺序模拟进行了比较。所获得的速度提升可与大型多核系统相媲美。该框架针对具有轴对称狭窄的直动脉和具有轴对称窦道的双叶机械心脏瓣膜进行了广泛验证。然后,该框架模拟了复杂的动脉流动,如狭窄的主动脉、患者特异性分支主动脉、带有瓦尔萨尔瓦窦和主动脉的双叶机械心脏瓣膜,最后是患者特异性髂主动脉瘤。该框架大大降低了复杂动脉模型对 GPU 内存的需求,使我们能够在单个 GPU 中对狭窄主动脉和机械心脏瓣膜进行直接数值模拟(DNS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU optimized multi-block-multi-mesh immersed boundary method for flows in complex arterial models

Immersed boundary method (IBM) is widely used for simulating flow in complex geometries using structured grids. However, this entails a disadvantage when simulating internal flows through curved and bent tubes. The presence of grids outside the fluid domain leads to the wastage of memory and computational overheads. Here, we propose a multi-block-multi-mesh framework to capture the complex geometry using multiple grid blocks fitted close to the body, reducing excess grids. This also has the advantage of using different and non-uniform grid spacing in different blocks. The reduction of the grid enables encompassing bigger caseloads on a single GPU. The solver is accelerated on GPU using OpenACC, compared to sequential CPU simulations, and speedup is presented. The speedup obtained is comparable to that of large multicore systems. The framework is extensively validated for straight artery with axisymmetric stenosis and bileaflet mechanical heart valve with axisymmetric sinus. This framework then models complex arterial flows like stenosed aorta, patient-specific branched aorta, bileaflet mechanical heart valve with Valsalva sinus and aorta, and lastly, patient-specific iliac aortic aneurysm. This framework achieves a significant reduction in GPU memory requirement for complex arterial models, enabling us to perform direct numerical simulation (DNS) of the stenosed aorta and mechanical heart valve cases in a single GPU.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
期刊最新文献
Editorial Board Efficient quantum lattice gas automata Energy-consistent discretization of viscous dissipation with application to natural convection flow The numerical analysis of complete and partial electrocoalescence in the droplet-layer system employing the sharp interface technique for multiphase-medium simulation Numerical investigation on the end effects of the flow past a finite rotating circular cylinder with two free ends
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1