用于增强光催化和电催化性能的 N-ZnO/g-C3N4 纳米气流

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY Physica E-low-dimensional Systems & Nanostructures Pub Date : 2024-07-15 DOI:10.1016/j.physe.2024.116053
Iqra Fareed , Masood ul Hassan Farooq , Muhammad Danish Khan , Muhammad Faran Yunas , Muhammad Safdar , Muhammad Tanveer , Faheem K. Butt
{"title":"用于增强光催化和电催化性能的 N-ZnO/g-C3N4 纳米气流","authors":"Iqra Fareed ,&nbsp;Masood ul Hassan Farooq ,&nbsp;Muhammad Danish Khan ,&nbsp;Muhammad Faran Yunas ,&nbsp;Muhammad Safdar ,&nbsp;Muhammad Tanveer ,&nbsp;Faheem K. Butt","doi":"10.1016/j.physe.2024.116053","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, CNNZO (N–ZnO/g-C<sub>3</sub>N<sub>4</sub>) nanocomposites were synthesized via a facile hydrothermal method and characterized using XRD, FTIR and FESEM. The resulting N–ZnO nano-needles and plate-like structures, anchored onto g-C<sub>3</sub>N<sub>4</sub> agglomerates, formed distinctive nano-flower topography. CNNZO demonstrated superior photocatalytic activity compared to CN and N–ZnO, achieving ∼98 % degradation of Methylene Blue, 85.53 % of Methyl Green and 87.29 % of Methyl Orange under visible light irradiation within 90 min. This enhanced performance is attributed to the unique morphology of CNNZO, which promotes efficient charge carrier transfer and inhibits recombination. Additionally, CNNZO exhibited improved electrocatalytic activity with smaller HER and OER potentials. This study underscores the potential of CNNZO nanocomposites as effective catalysts for the degradation of organic contaminants and hydrogen and oxygen evolution for energy production.</p></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"164 ","pages":"Article 116053"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N–ZnO/g-C3N4 nanoflowers for enhanced photocatalytic and electrocatalytic performances\",\"authors\":\"Iqra Fareed ,&nbsp;Masood ul Hassan Farooq ,&nbsp;Muhammad Danish Khan ,&nbsp;Muhammad Faran Yunas ,&nbsp;Muhammad Safdar ,&nbsp;Muhammad Tanveer ,&nbsp;Faheem K. Butt\",\"doi\":\"10.1016/j.physe.2024.116053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, CNNZO (N–ZnO/g-C<sub>3</sub>N<sub>4</sub>) nanocomposites were synthesized via a facile hydrothermal method and characterized using XRD, FTIR and FESEM. The resulting N–ZnO nano-needles and plate-like structures, anchored onto g-C<sub>3</sub>N<sub>4</sub> agglomerates, formed distinctive nano-flower topography. CNNZO demonstrated superior photocatalytic activity compared to CN and N–ZnO, achieving ∼98 % degradation of Methylene Blue, 85.53 % of Methyl Green and 87.29 % of Methyl Orange under visible light irradiation within 90 min. This enhanced performance is attributed to the unique morphology of CNNZO, which promotes efficient charge carrier transfer and inhibits recombination. Additionally, CNNZO exhibited improved electrocatalytic activity with smaller HER and OER potentials. This study underscores the potential of CNNZO nanocomposites as effective catalysts for the degradation of organic contaminants and hydrogen and oxygen evolution for energy production.</p></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"164 \",\"pages\":\"Article 116053\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724001577\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724001577","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用简便的水热法合成了 CNNZO(N-ZnO/g-C3N4)纳米复合材料,并使用 XRD、FTIR 和 FESEM 对其进行了表征。在 g-C3N4 团聚体上锚定的 N-ZnO 纳米针状和板状结构形成了独特的纳米花形貌。与 CN 和 N-ZnO 相比,CNNZO 表现出更高的光催化活性,在可见光照射下,90 分钟内可实现 98% 的亚甲基蓝降解率、85.53% 的甲基绿降解率和 87.29% 的甲基橙降解率。性能的提高归功于 CNNZO 独特的形貌,这种形貌促进了电荷载流子的有效转移并抑制了重组。此外,CNNZO 还表现出更高的电催化活性和更小的 HER 和 OER 电位。这项研究强调了 CNNZO 纳米复合材料作为有效催化剂的潜力,可用于有机污染物的降解以及氢和氧的进化,从而实现能源生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N–ZnO/g-C3N4 nanoflowers for enhanced photocatalytic and electrocatalytic performances

In this study, CNNZO (N–ZnO/g-C3N4) nanocomposites were synthesized via a facile hydrothermal method and characterized using XRD, FTIR and FESEM. The resulting N–ZnO nano-needles and plate-like structures, anchored onto g-C3N4 agglomerates, formed distinctive nano-flower topography. CNNZO demonstrated superior photocatalytic activity compared to CN and N–ZnO, achieving ∼98 % degradation of Methylene Blue, 85.53 % of Methyl Green and 87.29 % of Methyl Orange under visible light irradiation within 90 min. This enhanced performance is attributed to the unique morphology of CNNZO, which promotes efficient charge carrier transfer and inhibits recombination. Additionally, CNNZO exhibited improved electrocatalytic activity with smaller HER and OER potentials. This study underscores the potential of CNNZO nanocomposites as effective catalysts for the degradation of organic contaminants and hydrogen and oxygen evolution for energy production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
期刊最新文献
GST and BFO assisted microring resonator for nanoplasmonic applications Josephson and thermophase effect in interacting T-shaped double quantum dots system Photonic modes in twisted graphene nanoribbons Uncovering bound states in the continuum in InSb nanowire networks Enhanced piezoelectricity induced by transition metal atoms adsorption on monolayer and bilayer MoS2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1