Wenlong Zhang, Yufei Zhang, Xiangdong Li, Ruixiong Li, Huanran Wang, Peng Jin, Junyu Du, Yaoguang Song
{"title":"基于 AA-CAES 的储气罐性能分析和配置方法优化","authors":"Wenlong Zhang, Yufei Zhang, Xiangdong Li, Ruixiong Li, Huanran Wang, Peng Jin, Junyu Du, Yaoguang Song","doi":"10.1063/5.0206283","DOIUrl":null,"url":null,"abstract":"To improve the performance of the compressed air energy storage (CAES) system, flow and heat transfer in different air storage tank (AST) configurations are investigated using numerical simulations after the numerical model has been experimentally validated. System performance for different AST placement methods is analyzed through numerical simulations integrated with the thermodynamic model of advanced adiabatic compressed air energy storage (AA-CAES). An in-depth study examines the impact of key system parameters on system performance with different AST configurations. Based on these analyses, the AA-CAES system with a constant volume of AST is optimized. The results indicate that horizontal placement of the AST improves heat transfer capability within the same working pressure range but results in slightly lower energy storage efficiency, achieving 64.61% compared to 65.50% for vertical placement. However, horizontal placement offers higher energy storage density, achieving 3.54 kW h/m3 under specific conditions, compared to 3.14 kW h/m3 for vertical placement. As the energy storage flow rate increases, exceeding the critical flow rate significantly improves heat transfer in vertically placed ASTs, thus narrowing the energy storage density gap between configurations. Increased turbine efficiency, additional external heat sources, and further utilization of compression heat provide more significant performance improvements for the AA-CAES with the AST placed horizontally compared to vertically. Compared to the AA-CAES with vertically placed ASTs, the configuration of the ASTs is optimized to enhance the electrical output of the AA-CAES by 76.4 MW h and reduce the input by 78.9 MW h at a storage flow rate of 0.5 kg/s.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis and configuration method optimization of AA-CAES-based air storage tanks\",\"authors\":\"Wenlong Zhang, Yufei Zhang, Xiangdong Li, Ruixiong Li, Huanran Wang, Peng Jin, Junyu Du, Yaoguang Song\",\"doi\":\"10.1063/5.0206283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the performance of the compressed air energy storage (CAES) system, flow and heat transfer in different air storage tank (AST) configurations are investigated using numerical simulations after the numerical model has been experimentally validated. System performance for different AST placement methods is analyzed through numerical simulations integrated with the thermodynamic model of advanced adiabatic compressed air energy storage (AA-CAES). An in-depth study examines the impact of key system parameters on system performance with different AST configurations. Based on these analyses, the AA-CAES system with a constant volume of AST is optimized. The results indicate that horizontal placement of the AST improves heat transfer capability within the same working pressure range but results in slightly lower energy storage efficiency, achieving 64.61% compared to 65.50% for vertical placement. However, horizontal placement offers higher energy storage density, achieving 3.54 kW h/m3 under specific conditions, compared to 3.14 kW h/m3 for vertical placement. As the energy storage flow rate increases, exceeding the critical flow rate significantly improves heat transfer in vertically placed ASTs, thus narrowing the energy storage density gap between configurations. Increased turbine efficiency, additional external heat sources, and further utilization of compression heat provide more significant performance improvements for the AA-CAES with the AST placed horizontally compared to vertically. Compared to the AA-CAES with vertically placed ASTs, the configuration of the ASTs is optimized to enhance the electrical output of the AA-CAES by 76.4 MW h and reduce the input by 78.9 MW h at a storage flow rate of 0.5 kg/s.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0206283\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0206283","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Performance analysis and configuration method optimization of AA-CAES-based air storage tanks
To improve the performance of the compressed air energy storage (CAES) system, flow and heat transfer in different air storage tank (AST) configurations are investigated using numerical simulations after the numerical model has been experimentally validated. System performance for different AST placement methods is analyzed through numerical simulations integrated with the thermodynamic model of advanced adiabatic compressed air energy storage (AA-CAES). An in-depth study examines the impact of key system parameters on system performance with different AST configurations. Based on these analyses, the AA-CAES system with a constant volume of AST is optimized. The results indicate that horizontal placement of the AST improves heat transfer capability within the same working pressure range but results in slightly lower energy storage efficiency, achieving 64.61% compared to 65.50% for vertical placement. However, horizontal placement offers higher energy storage density, achieving 3.54 kW h/m3 under specific conditions, compared to 3.14 kW h/m3 for vertical placement. As the energy storage flow rate increases, exceeding the critical flow rate significantly improves heat transfer in vertically placed ASTs, thus narrowing the energy storage density gap between configurations. Increased turbine efficiency, additional external heat sources, and further utilization of compression heat provide more significant performance improvements for the AA-CAES with the AST placed horizontally compared to vertically. Compared to the AA-CAES with vertically placed ASTs, the configuration of the ASTs is optimized to enhance the electrical output of the AA-CAES by 76.4 MW h and reduce the input by 78.9 MW h at a storage flow rate of 0.5 kg/s.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy