不同加载约束条件下复合材料带材中传播的 SH 波引起的移动裂纹

IF 2.2 3区 工程技术 Q2 MECHANICS Archive of Applied Mechanics Pub Date : 2024-07-17 DOI:10.1007/s00419-024-02649-8
Santan Kumar, Ram Prasad Yadav, Renu
{"title":"不同加载约束条件下复合材料带材中传播的 SH 波引起的移动裂纹","authors":"Santan Kumar, Ram Prasad Yadav, Renu","doi":"10.1007/s00419-024-02649-8","DOIUrl":null,"url":null,"abstract":"<p>The crux of the present investigation is to come up with a mathematical model for the analysis of moving interfacial crack caused by SH-wave propagating in a composite strip featuring dissimilar orthotropic material. Wiener–Hopf methodology along with complex variable transform technique has been applied to determine the closed form analytical expression of SIF (stress intensity factor). Two different types of loading constraints, viz. NHL (non-harmonic loading) and HL (harmonic loading), on the edges of the crack have been studied. In addition to this, some special cases, viz. constant loading and stress free condition, following aforementioned loading constraints have also been taken into account for the moving crack in the considered composite strip. The limiting case for static condition leading to resonance-type phenomena has been presented for the subject under investigation. When computed numerically and depicted graphically, the profound impacts of distinct material and geometrical parameters on SIF for distinct loading constraints have also been manifested. The computational results bring out the fact that stress intensity factor falls off with rise in crack velocity when the edges of the crack are under NHL, whereas SIF shows reverse nature for HL.</p>","PeriodicalId":477,"journal":{"name":"Archive of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moving crack caused by SH-wave propagating in a composite strip under distinct loading constraints\",\"authors\":\"Santan Kumar, Ram Prasad Yadav, Renu\",\"doi\":\"10.1007/s00419-024-02649-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The crux of the present investigation is to come up with a mathematical model for the analysis of moving interfacial crack caused by SH-wave propagating in a composite strip featuring dissimilar orthotropic material. Wiener–Hopf methodology along with complex variable transform technique has been applied to determine the closed form analytical expression of SIF (stress intensity factor). Two different types of loading constraints, viz. NHL (non-harmonic loading) and HL (harmonic loading), on the edges of the crack have been studied. In addition to this, some special cases, viz. constant loading and stress free condition, following aforementioned loading constraints have also been taken into account for the moving crack in the considered composite strip. The limiting case for static condition leading to resonance-type phenomena has been presented for the subject under investigation. When computed numerically and depicted graphically, the profound impacts of distinct material and geometrical parameters on SIF for distinct loading constraints have also been manifested. The computational results bring out the fact that stress intensity factor falls off with rise in crack velocity when the edges of the crack are under NHL, whereas SIF shows reverse nature for HL.</p>\",\"PeriodicalId\":477,\"journal\":{\"name\":\"Archive of Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00419-024-02649-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00419-024-02649-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的关键在于建立一个数学模型,用于分析 SH 波在具有异种正交材料的复合材料带中传播时引起的移动界面裂纹。Wiener-Hopf 方法与复变变换技术一起被用于确定 SIF(应力强度因子)的封闭式分析表达式。研究了裂缝边缘的两种不同类型的加载约束,即 NHL(非谐波加载)和 HL(谐波加载)。此外,还考虑了一些特殊情况,即恒定加载和无应力条件,在上述加载约束条件下,考虑复合材料带材中的移动裂纹。针对研究对象提出了导致共振型现象的静态条件极限情况。通过数值计算和图表说明,在不同的加载约束条件下,不同的材料和几何参数对 SIF 的深刻影响也得到了体现。计算结果表明,当裂纹边缘处于 NHL 条件下时,应力强度因子随裂纹速度的增加而下降,而 SIF 则与 HL 的性质相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Moving crack caused by SH-wave propagating in a composite strip under distinct loading constraints

The crux of the present investigation is to come up with a mathematical model for the analysis of moving interfacial crack caused by SH-wave propagating in a composite strip featuring dissimilar orthotropic material. Wiener–Hopf methodology along with complex variable transform technique has been applied to determine the closed form analytical expression of SIF (stress intensity factor). Two different types of loading constraints, viz. NHL (non-harmonic loading) and HL (harmonic loading), on the edges of the crack have been studied. In addition to this, some special cases, viz. constant loading and stress free condition, following aforementioned loading constraints have also been taken into account for the moving crack in the considered composite strip. The limiting case for static condition leading to resonance-type phenomena has been presented for the subject under investigation. When computed numerically and depicted graphically, the profound impacts of distinct material and geometrical parameters on SIF for distinct loading constraints have also been manifested. The computational results bring out the fact that stress intensity factor falls off with rise in crack velocity when the edges of the crack are under NHL, whereas SIF shows reverse nature for HL.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
10.70%
发文量
234
审稿时长
4-8 weeks
期刊介绍: Archive of Applied Mechanics serves as a platform to communicate original research of scholarly value in all branches of theoretical and applied mechanics, i.e., in solid and fluid mechanics, dynamics and vibrations. It focuses on continuum mechanics in general, structural mechanics, biomechanics, micro- and nano-mechanics as well as hydrodynamics. In particular, the following topics are emphasised: thermodynamics of materials, material modeling, multi-physics, mechanical properties of materials, homogenisation, phase transitions, fracture and damage mechanics, vibration, wave propagation experimental mechanics as well as machine learning techniques in the context of applied mechanics.
期刊最新文献
Warping-included mixed FE approach of beating characteristics in functionally graded graphene platelet-reinforced composite spatially curved beams under harmonic excitation force Numerical investigation on auxetic angle-ply CFRP composite laminates under low-velocity impact loading Nonlinear thermo-mechanical dynamic buckling and vibration of FG-GPLRC circular plates and shallow spherical shells resting on the nonlinear viscoelastic foundation Study on the mechanical properties and energy absorption of Gyroid sandwich structures with different gradient rules Reduced transfer equations of ball-and-socket joint elements incorporated with Euler parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1