开发用于制造双面 TOPCon 太阳能电池前驱体的 APCVD BSG 和 POCl3 联扩散工艺

IF 2.5 3区 工程技术 Q3 ENERGY & FUELS IEEE Journal of Photovoltaics Pub Date : 2024-07-15 DOI:10.1109/JPHOTOV.2024.3423814
Wook-Jin Choi;Young-Woo Ok;Keeya Madani;Vijaykumar D Upadhyaya;Ajay D Upadhyaya;Brian Rounsaville;Pradeep Padhamnath;Gabby De Luna;John Derek Arcebal;Ajeet Rohatgi
{"title":"开发用于制造双面 TOPCon 太阳能电池前驱体的 APCVD BSG 和 POCl3 联扩散工艺","authors":"Wook-Jin Choi;Young-Woo Ok;Keeya Madani;Vijaykumar D Upadhyaya;Ajay D Upadhyaya;Brian Rounsaville;Pradeep Padhamnath;Gabby De Luna;John Derek Arcebal;Ajeet Rohatgi","doi":"10.1109/JPHOTOV.2024.3423814","DOIUrl":null,"url":null,"abstract":"This article presents a commercially viable process for fabricating a high-quality double-side tunnel oxide passivating contact (DS-TOPCon) cell precursor using atmospheric pressure chemical vapor deposition deposited boron silicate glass and ex situ POCl\n<sub>3</sub>\n diffusion in a single high-temperature step, eliminating the need for additional masking and diffusion processes. A two-tier temperature profile was developed, involving a preannealing at above 900 °C in nitrogen ambient followed by POCl\n<sub>3</sub>\n diffusion at 840 °C. We investigated the effect of varying preannealing temperatures, ranging from 875 to 950 °C, on the passivation quality and metal-Si contact properties of both \n<italic>n</i>\n-TOPCon and \n<italic>p</i>\n-TOPCon layers. The resultant DS-TOPCon cell precursor after silicon nitride passivation exhibited an excellent iV\n<sub>OC</sub>\n of close to 730 mV. In addition, a rapid asymmetric poly-Si thinning technique, developed in this work, enabled adjustment of the front \n<italic>n</i>\n<sup>+</sup>\n poly-Si thickness while maintaining the rear \n<italic>p</i>\n<sup>+</sup>\n poly-Si thickness. Two types of DS-TOPCon cell architectures can be fabricated: i) full-area thin (≈40 nm) \n<italic>n</i>\n-TOPCon layer on the front and ii) selective-area thick (≈200 nm) \n<italic>n</i>\n-TOPCon fingers underneath the metal grid. Device simulations suggest that full-area DS-TOPCon cell with 40 nm \n<italic>n<sup>+</sup></i>\n poly-Si and selective-area DS-TOPCon cell with 200 nm \n<italic>n<sup>+</sup></i>\n poly fingers on the front, fabricated from our current DS-TOPCon cell precursor, can achieve cell efficiencies of 22.1% and 23.5%, respectively. Detailed power loss analysis and device simulation reveal that further improvements in material and device parameters have the potential to push the cell efficiencies of DS-TOPCon cell structure beyond 25%, making it a promising alternative to fabricate high-efficiency next-generation solar cells at low cost.","PeriodicalId":445,"journal":{"name":"IEEE Journal of Photovoltaics","volume":"14 5","pages":"727-736"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of APCVD BSG and POCl3 Codiffusion Process for Double-Side TOPCon Solar Cell Precursor Fabrication\",\"authors\":\"Wook-Jin Choi;Young-Woo Ok;Keeya Madani;Vijaykumar D Upadhyaya;Ajay D Upadhyaya;Brian Rounsaville;Pradeep Padhamnath;Gabby De Luna;John Derek Arcebal;Ajeet Rohatgi\",\"doi\":\"10.1109/JPHOTOV.2024.3423814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a commercially viable process for fabricating a high-quality double-side tunnel oxide passivating contact (DS-TOPCon) cell precursor using atmospheric pressure chemical vapor deposition deposited boron silicate glass and ex situ POCl\\n<sub>3</sub>\\n diffusion in a single high-temperature step, eliminating the need for additional masking and diffusion processes. A two-tier temperature profile was developed, involving a preannealing at above 900 °C in nitrogen ambient followed by POCl\\n<sub>3</sub>\\n diffusion at 840 °C. We investigated the effect of varying preannealing temperatures, ranging from 875 to 950 °C, on the passivation quality and metal-Si contact properties of both \\n<italic>n</i>\\n-TOPCon and \\n<italic>p</i>\\n-TOPCon layers. The resultant DS-TOPCon cell precursor after silicon nitride passivation exhibited an excellent iV\\n<sub>OC</sub>\\n of close to 730 mV. In addition, a rapid asymmetric poly-Si thinning technique, developed in this work, enabled adjustment of the front \\n<italic>n</i>\\n<sup>+</sup>\\n poly-Si thickness while maintaining the rear \\n<italic>p</i>\\n<sup>+</sup>\\n poly-Si thickness. Two types of DS-TOPCon cell architectures can be fabricated: i) full-area thin (≈40 nm) \\n<italic>n</i>\\n-TOPCon layer on the front and ii) selective-area thick (≈200 nm) \\n<italic>n</i>\\n-TOPCon fingers underneath the metal grid. Device simulations suggest that full-area DS-TOPCon cell with 40 nm \\n<italic>n<sup>+</sup></i>\\n poly-Si and selective-area DS-TOPCon cell with 200 nm \\n<italic>n<sup>+</sup></i>\\n poly fingers on the front, fabricated from our current DS-TOPCon cell precursor, can achieve cell efficiencies of 22.1% and 23.5%, respectively. Detailed power loss analysis and device simulation reveal that further improvements in material and device parameters have the potential to push the cell efficiencies of DS-TOPCon cell structure beyond 25%, making it a promising alternative to fabricate high-efficiency next-generation solar cells at low cost.\",\"PeriodicalId\":445,\"journal\":{\"name\":\"IEEE Journal of Photovoltaics\",\"volume\":\"14 5\",\"pages\":\"727-736\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Photovoltaics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10599136/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Photovoltaics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599136/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种商业上可行的工艺,即利用常压化学气相沉积沉积硅酸硼玻璃和原位 POCl3 扩散,在一个高温步骤中制造出高质量的双面隧道氧化物钝化触点(DS-TOPCon)电池前驱体,从而省去了额外的掩蔽和扩散过程。我们开发了一种双层温度曲线,包括在氮气环境中进行高于 900 °C 的预退火,然后在 840 °C 下进行 POCl3 扩散。我们研究了不同预退火温度(从 875 ℃ 到 950 ℃)对 n-TOPCon 和 p-TOPCon 层的钝化质量和金属-硅接触特性的影响。氮化硅钝化后的 DS-TOPCon 电池前驱体显示出接近 730 mV 的出色 iVOC。此外,这项工作中开发的快速非对称多晶硅减薄技术能够在保持后部 p+ 多晶硅厚度的同时调整前部 n+ 多晶硅厚度。可以制造出两种 DS-TOPCon 电池结构:i) 正面全面积薄 n-TOPCon 层(≈40 nm);ii) 金属栅下的选择性面积厚 n-TOPCon 指(≈200 nm)。器件仿真表明,利用我们目前的 DS-TOPCon 电池前驱体制造的、正面有 40 nm n+ 聚硅层的全面积 DS-TOPCon 电池和正面有 200 nm n+ 聚硅指的选择性面积 DS-TOPCon 电池,可使电池效率分别达到 22.1% 和 23.5%。详细的功率损耗分析和器件仿真显示,材料和器件参数的进一步改进有可能使 DS-TOPCon 电池结构的电池效率超过 25%,使其成为以低成本制造高效率下一代太阳能电池的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of APCVD BSG and POCl3 Codiffusion Process for Double-Side TOPCon Solar Cell Precursor Fabrication
This article presents a commercially viable process for fabricating a high-quality double-side tunnel oxide passivating contact (DS-TOPCon) cell precursor using atmospheric pressure chemical vapor deposition deposited boron silicate glass and ex situ POCl 3 diffusion in a single high-temperature step, eliminating the need for additional masking and diffusion processes. A two-tier temperature profile was developed, involving a preannealing at above 900 °C in nitrogen ambient followed by POCl 3 diffusion at 840 °C. We investigated the effect of varying preannealing temperatures, ranging from 875 to 950 °C, on the passivation quality and metal-Si contact properties of both n -TOPCon and p -TOPCon layers. The resultant DS-TOPCon cell precursor after silicon nitride passivation exhibited an excellent iV OC of close to 730 mV. In addition, a rapid asymmetric poly-Si thinning technique, developed in this work, enabled adjustment of the front n + poly-Si thickness while maintaining the rear p + poly-Si thickness. Two types of DS-TOPCon cell architectures can be fabricated: i) full-area thin (≈40 nm) n -TOPCon layer on the front and ii) selective-area thick (≈200 nm) n -TOPCon fingers underneath the metal grid. Device simulations suggest that full-area DS-TOPCon cell with 40 nm n+ poly-Si and selective-area DS-TOPCon cell with 200 nm n+ poly fingers on the front, fabricated from our current DS-TOPCon cell precursor, can achieve cell efficiencies of 22.1% and 23.5%, respectively. Detailed power loss analysis and device simulation reveal that further improvements in material and device parameters have the potential to push the cell efficiencies of DS-TOPCon cell structure beyond 25%, making it a promising alternative to fabricate high-efficiency next-generation solar cells at low cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Photovoltaics
IEEE Journal of Photovoltaics ENERGY & FUELS-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.00
自引率
10.00%
发文量
206
期刊介绍: The IEEE Journal of Photovoltaics is a peer-reviewed, archival publication reporting original and significant research results that advance the field of photovoltaics (PV). The PV field is diverse in its science base ranging from semiconductor and PV device physics to optics and the materials sciences. The journal publishes articles that connect this science base to PV science and technology. The intent is to publish original research results that are of primary interest to the photovoltaic specialist. The scope of the IEEE J. Photovoltaics incorporates: fundamentals and new concepts of PV conversion, including those based on nanostructured materials, low-dimensional physics, multiple charge generation, up/down converters, thermophotovoltaics, hot-carrier effects, plasmonics, metamorphic materials, luminescent concentrators, and rectennas; Si-based PV, including new cell designs, crystalline and non-crystalline Si, passivation, characterization and Si crystal growth; polycrystalline, amorphous and crystalline thin-film solar cell materials, including PV structures and solar cells based on II-VI, chalcopyrite, Si and other thin film absorbers; III-V PV materials, heterostructures, multijunction devices and concentrator PV; optics for light trapping, reflection control and concentration; organic PV including polymer, hybrid and dye sensitized solar cells; space PV including cell materials and PV devices, defects and reliability, environmental effects and protective materials; PV modeling and characterization methods; and other aspects of PV, including modules, power conditioning, inverters, balance-of-systems components, monitoring, analyses and simulations, and supporting PV module standards and measurements. Tutorial and review papers on these subjects are also published and occasionally special issues are published to treat particular areas in more depth and breadth.
期刊最新文献
2024 Index IEEE Journal of Photovoltaics Vol. 14 Design and Development of a New Smart Portable I-V Tracer Table of Contents Front Cover TechRxiv: Share Your Preprint Research with the World!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1