Yitao Liu, Yueqiang Wu, Jun Wang, Chuanxiang Guo, Huiming Sun, Ruiyu Chen, Renming Pan
{"title":"多加热速率下双基推进剂的热行为、动力学、热力学和化学反应研究","authors":"Yitao Liu, Yueqiang Wu, Jun Wang, Chuanxiang Guo, Huiming Sun, Ruiyu Chen, Renming Pan","doi":"10.1007/s11144-024-02692-0","DOIUrl":null,"url":null,"abstract":"<div><p>The present study investigates the thermal behavior, devolatilization index, heat variations, kinetic and thermodynamic characteristic parameters, volatile components and possible chemical reactions of double-base propellant pyrolysis. Thermogravimetric analysis (TGA), in-situ Fourier transform infrared spectroscopy (FTIR) and online TGA-FTIR mass spectrometry are employed. The findings indicate that alterations in temperature and heating rate significantly affect the pyrolysis process, exhibiting a triphasic behavior, where the initial stage may be considered as a single-step reaction, primarily involving the pyrolysis of nitroglycerin. The pyrolysis of nitrocellulose predominantly occurs in the third stage. With the increase of heating rate, the reaction rate of the first stage decreases, whereas that of the second stage increases, resulting in a temperature hysteresis phenomenon. The maximum instantaneous heat flow and the total heat flow both increases, while the full width at half maximum decreases, thereby enhancing the combustion performance and reaction intensity of double-base propellant, while reducing the thermal stability. 450–550 K is the main exothermic temperature range. The average activation energies for the first and second stages of double-base propellant pyrolysis, determined using three effective kinetic methods, are 107.14 kJ/mol and 379.14 kJ/mol. The model <i>g</i>(<i>α</i>) = (1− (1− <i>α</i>)<sup>(1/3)</sup>)<sup>2</sup> can accurately characterize the first pyrolysis stage from a kinetic perspective. The average values of ∆<i>H</i>, ∆<i>G</i> and ∆<i>S</i> are 231.83 kJ mol<sup>−1</sup>, 231.83 kJ mol<sup>−1</sup> and − 35.06 J K<sup>−1</sup>. The pyrolysis of double-base propellant is an unstable and non-spontaneous endothermic reaction with decreasing stability as the reaction progresses. The major components of volatiles produced and the potential chemical reactions involved are identified.</p></div>","PeriodicalId":750,"journal":{"name":"Reaction Kinetics, Mechanisms and Catalysis","volume":"137 5","pages":"2725 - 2751"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the thermal behavior, kinetics, thermodynamics and chemical reactions of double-base propellant under multiple heating rates\",\"authors\":\"Yitao Liu, Yueqiang Wu, Jun Wang, Chuanxiang Guo, Huiming Sun, Ruiyu Chen, Renming Pan\",\"doi\":\"10.1007/s11144-024-02692-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study investigates the thermal behavior, devolatilization index, heat variations, kinetic and thermodynamic characteristic parameters, volatile components and possible chemical reactions of double-base propellant pyrolysis. Thermogravimetric analysis (TGA), in-situ Fourier transform infrared spectroscopy (FTIR) and online TGA-FTIR mass spectrometry are employed. The findings indicate that alterations in temperature and heating rate significantly affect the pyrolysis process, exhibiting a triphasic behavior, where the initial stage may be considered as a single-step reaction, primarily involving the pyrolysis of nitroglycerin. The pyrolysis of nitrocellulose predominantly occurs in the third stage. With the increase of heating rate, the reaction rate of the first stage decreases, whereas that of the second stage increases, resulting in a temperature hysteresis phenomenon. The maximum instantaneous heat flow and the total heat flow both increases, while the full width at half maximum decreases, thereby enhancing the combustion performance and reaction intensity of double-base propellant, while reducing the thermal stability. 450–550 K is the main exothermic temperature range. The average activation energies for the first and second stages of double-base propellant pyrolysis, determined using three effective kinetic methods, are 107.14 kJ/mol and 379.14 kJ/mol. The model <i>g</i>(<i>α</i>) = (1− (1− <i>α</i>)<sup>(1/3)</sup>)<sup>2</sup> can accurately characterize the first pyrolysis stage from a kinetic perspective. The average values of ∆<i>H</i>, ∆<i>G</i> and ∆<i>S</i> are 231.83 kJ mol<sup>−1</sup>, 231.83 kJ mol<sup>−1</sup> and − 35.06 J K<sup>−1</sup>. The pyrolysis of double-base propellant is an unstable and non-spontaneous endothermic reaction with decreasing stability as the reaction progresses. The major components of volatiles produced and the potential chemical reactions involved are identified.</p></div>\",\"PeriodicalId\":750,\"journal\":{\"name\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"volume\":\"137 5\",\"pages\":\"2725 - 2751\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Kinetics, Mechanisms and Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11144-024-02692-0\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Kinetics, Mechanisms and Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11144-024-02692-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Study on the thermal behavior, kinetics, thermodynamics and chemical reactions of double-base propellant under multiple heating rates
The present study investigates the thermal behavior, devolatilization index, heat variations, kinetic and thermodynamic characteristic parameters, volatile components and possible chemical reactions of double-base propellant pyrolysis. Thermogravimetric analysis (TGA), in-situ Fourier transform infrared spectroscopy (FTIR) and online TGA-FTIR mass spectrometry are employed. The findings indicate that alterations in temperature and heating rate significantly affect the pyrolysis process, exhibiting a triphasic behavior, where the initial stage may be considered as a single-step reaction, primarily involving the pyrolysis of nitroglycerin. The pyrolysis of nitrocellulose predominantly occurs in the third stage. With the increase of heating rate, the reaction rate of the first stage decreases, whereas that of the second stage increases, resulting in a temperature hysteresis phenomenon. The maximum instantaneous heat flow and the total heat flow both increases, while the full width at half maximum decreases, thereby enhancing the combustion performance and reaction intensity of double-base propellant, while reducing the thermal stability. 450–550 K is the main exothermic temperature range. The average activation energies for the first and second stages of double-base propellant pyrolysis, determined using three effective kinetic methods, are 107.14 kJ/mol and 379.14 kJ/mol. The model g(α) = (1− (1− α)(1/3))2 can accurately characterize the first pyrolysis stage from a kinetic perspective. The average values of ∆H, ∆G and ∆S are 231.83 kJ mol−1, 231.83 kJ mol−1 and − 35.06 J K−1. The pyrolysis of double-base propellant is an unstable and non-spontaneous endothermic reaction with decreasing stability as the reaction progresses. The major components of volatiles produced and the potential chemical reactions involved are identified.
期刊介绍:
Reaction Kinetics, Mechanisms and Catalysis is a medium for original contributions in the following fields:
-kinetics of homogeneous reactions in gas, liquid and solid phase;
-Homogeneous catalysis;
-Heterogeneous catalysis;
-Adsorption in heterogeneous catalysis;
-Transport processes related to reaction kinetics and catalysis;
-Preparation and study of catalysts;
-Reactors and apparatus.
Reaction Kinetics, Mechanisms and Catalysis was formerly published under the title Reaction Kinetics and Catalysis Letters.