Christoph Zechner, Anna Johnsson, Tamara Fidler, Patrick Schmid
{"title":"大范围条件下的碳化硅氧化工艺模型","authors":"Christoph Zechner, Anna Johnsson, Tamara Fidler, Patrick Schmid","doi":"10.1002/pssa.202400234","DOIUrl":null,"url":null,"abstract":"A comprehensive process model for 4H‐SiC oxidation is created and calibrated against a very large collection of experimental data. The model reproduces measured oxide thickness for Si‐face, C‐face, and a‐face SiC wafers, in the temperature range 950–1500 °C, in the pressure range 0.25–4.0 atm, in the thickness range 3–1600 nm, and for SiC doping ranging between 10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup> n‐type and 10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup> p‐type. The model is based on the Massoud model: Oxidation is driven by oxidants (O<jats:sub>2</jats:sub>, H<jats:sub>2</jats:sub>O) which are present in the gas phase, diffuse through the oxide, and form SiO<jats:sub>2</jats:sub> at the oxide–SiC interface. For thin oxides, the interface reaction rate includes empirical correction terms which add to the oxidation rate, and which asymptotically approach zero with increasing oxide thickness. For dry oxidation, a remarkable dependence on the O<jats:sub>2</jats:sub> partial pressure is discovered: For thick oxides, the oxidation rate scales linearly with the pressure, but the correction term for thin oxides scales with the square root of the pressure. This suggests that the atomistic processes responsible for the fast initial growth of oxides involve the splitting of O<jats:sub>2</jats:sub> molecules into two O atoms.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":"48 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Process Model for SiC Oxidation for a Large Range of Conditions\",\"authors\":\"Christoph Zechner, Anna Johnsson, Tamara Fidler, Patrick Schmid\",\"doi\":\"10.1002/pssa.202400234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comprehensive process model for 4H‐SiC oxidation is created and calibrated against a very large collection of experimental data. The model reproduces measured oxide thickness for Si‐face, C‐face, and a‐face SiC wafers, in the temperature range 950–1500 °C, in the pressure range 0.25–4.0 atm, in the thickness range 3–1600 nm, and for SiC doping ranging between 10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup> n‐type and 10<jats:sup>19</jats:sup> cm<jats:sup>−3</jats:sup> p‐type. The model is based on the Massoud model: Oxidation is driven by oxidants (O<jats:sub>2</jats:sub>, H<jats:sub>2</jats:sub>O) which are present in the gas phase, diffuse through the oxide, and form SiO<jats:sub>2</jats:sub> at the oxide–SiC interface. For thin oxides, the interface reaction rate includes empirical correction terms which add to the oxidation rate, and which asymptotically approach zero with increasing oxide thickness. For dry oxidation, a remarkable dependence on the O<jats:sub>2</jats:sub> partial pressure is discovered: For thick oxides, the oxidation rate scales linearly with the pressure, but the correction term for thin oxides scales with the square root of the pressure. This suggests that the atomistic processes responsible for the fast initial growth of oxides involve the splitting of O<jats:sub>2</jats:sub> molecules into two O atoms.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400234\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400234","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
建立了一个 4H-SiC 氧化综合工艺模型,并根据大量实验数据进行了校准。该模型再现了在温度范围 950-1500 °C、压力范围 0.25-4.0 atm、厚度范围 3-1600 nm,以及碳化硅掺杂量介于 1019 cm-3 n 型和 1019 cm-3 p 型之间的情况下,碳化硅硅面、碳化硅 C 面和碳化硅 a 面晶圆的氧化厚度测量值。该模型基于马苏德模型:氧化作用由氧化剂(O2、H2O)驱动,氧化剂存在于气相中,通过氧化物扩散,并在氧化物-SiC 界面形成 SiO2。对于薄氧化物,界面反应速率包括经验修正项,这些修正项会增加氧化速率,并随着氧化物厚度的增加而逐渐趋近于零。对于干氧化,发现了与氧气分压的显著相关性:对于厚氧化物,氧化率与压力成线性比例,但对于薄氧化物,修正项与压力的平方根成比例。这表明,导致氧化物快速初始增长的原子过程涉及将 O2 分子分裂成两个 O 原子。
Process Model for SiC Oxidation for a Large Range of Conditions
A comprehensive process model for 4H‐SiC oxidation is created and calibrated against a very large collection of experimental data. The model reproduces measured oxide thickness for Si‐face, C‐face, and a‐face SiC wafers, in the temperature range 950–1500 °C, in the pressure range 0.25–4.0 atm, in the thickness range 3–1600 nm, and for SiC doping ranging between 1019 cm−3 n‐type and 1019 cm−3 p‐type. The model is based on the Massoud model: Oxidation is driven by oxidants (O2, H2O) which are present in the gas phase, diffuse through the oxide, and form SiO2 at the oxide–SiC interface. For thin oxides, the interface reaction rate includes empirical correction terms which add to the oxidation rate, and which asymptotically approach zero with increasing oxide thickness. For dry oxidation, a remarkable dependence on the O2 partial pressure is discovered: For thick oxides, the oxidation rate scales linearly with the pressure, but the correction term for thin oxides scales with the square root of the pressure. This suggests that the atomistic processes responsible for the fast initial growth of oxides involve the splitting of O2 molecules into two O atoms.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.