Binbin Chen, Yang Hu, Huazhang Zhang, Wen Chen, Jing Zhou
{"title":"掺杂铌的 BNKT 陶瓷的铁电稳定性和疲劳机理","authors":"Binbin Chen, Yang Hu, Huazhang Zhang, Wen Chen, Jing Zhou","doi":"10.1007/s10832-024-00359-9","DOIUrl":null,"url":null,"abstract":"<p>The fatigue behavior of Bi<sub>0.5</sub>Na<sub>0.4</sub>K<sub>0.1</sub>TiO<sub>3</sub>-based ceramics depends on the polarity. While the non-ergodic relaxor ceramics have large residual polarization but poor fatigue behavior, the ergodic relaxor ceramics have excellent fatigue resistance but tiny residual polarization. Therefore, obtaining ferroelectric ceramics with high residual polarization and excellent fatigue resistance is challenging due to the trade-off between non-ergodic relaxor and ergodic relaxor. Here, we modulate the free energy barrier by doping relaxant Nb to achieve the coexistence of non-ergodic and ergodic relaxor phases. At 0.6% Nb doping, the residual polarization is large at 2<i>P</i><sub><i>r</i></sub> = 49.3 µC/cm<sup>2</sup>, increased to 54.23 µC/cm<sup>2</sup> after 10<sup>2</sup> cycles and decreased to 53.04 µC/cm<sup>2</sup> after 10<sup>5</sup> cycles, indicating good fatigue resistance behavior. The large residual polarization is due to the metastable ferroelectric state, while the excellent fatigue resistance may be attributed to the field-induced ferroelectric-relaxor phase transition.</p>","PeriodicalId":625,"journal":{"name":"Journal of Electroceramics","volume":"50 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroelectric stability and fatigue mechanism of BNKT ceramics by Nb doping\",\"authors\":\"Binbin Chen, Yang Hu, Huazhang Zhang, Wen Chen, Jing Zhou\",\"doi\":\"10.1007/s10832-024-00359-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fatigue behavior of Bi<sub>0.5</sub>Na<sub>0.4</sub>K<sub>0.1</sub>TiO<sub>3</sub>-based ceramics depends on the polarity. While the non-ergodic relaxor ceramics have large residual polarization but poor fatigue behavior, the ergodic relaxor ceramics have excellent fatigue resistance but tiny residual polarization. Therefore, obtaining ferroelectric ceramics with high residual polarization and excellent fatigue resistance is challenging due to the trade-off between non-ergodic relaxor and ergodic relaxor. Here, we modulate the free energy barrier by doping relaxant Nb to achieve the coexistence of non-ergodic and ergodic relaxor phases. At 0.6% Nb doping, the residual polarization is large at 2<i>P</i><sub><i>r</i></sub> = 49.3 µC/cm<sup>2</sup>, increased to 54.23 µC/cm<sup>2</sup> after 10<sup>2</sup> cycles and decreased to 53.04 µC/cm<sup>2</sup> after 10<sup>5</sup> cycles, indicating good fatigue resistance behavior. The large residual polarization is due to the metastable ferroelectric state, while the excellent fatigue resistance may be attributed to the field-induced ferroelectric-relaxor phase transition.</p>\",\"PeriodicalId\":625,\"journal\":{\"name\":\"Journal of Electroceramics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electroceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10832-024-00359-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electroceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10832-024-00359-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Ferroelectric stability and fatigue mechanism of BNKT ceramics by Nb doping
The fatigue behavior of Bi0.5Na0.4K0.1TiO3-based ceramics depends on the polarity. While the non-ergodic relaxor ceramics have large residual polarization but poor fatigue behavior, the ergodic relaxor ceramics have excellent fatigue resistance but tiny residual polarization. Therefore, obtaining ferroelectric ceramics with high residual polarization and excellent fatigue resistance is challenging due to the trade-off between non-ergodic relaxor and ergodic relaxor. Here, we modulate the free energy barrier by doping relaxant Nb to achieve the coexistence of non-ergodic and ergodic relaxor phases. At 0.6% Nb doping, the residual polarization is large at 2Pr = 49.3 µC/cm2, increased to 54.23 µC/cm2 after 102 cycles and decreased to 53.04 µC/cm2 after 105 cycles, indicating good fatigue resistance behavior. The large residual polarization is due to the metastable ferroelectric state, while the excellent fatigue resistance may be attributed to the field-induced ferroelectric-relaxor phase transition.
期刊介绍:
While ceramics have traditionally been admired for their mechanical, chemical and thermal stability, their unique electrical, optical and magnetic properties have become of increasing importance in many key technologies including communications, energy conversion and storage, electronics and automation. Electroceramics benefit greatly from their versatility in properties including:
-insulating to metallic and fast ion conductivity
-piezo-, ferro-, and pyro-electricity
-electro- and nonlinear optical properties
-feromagnetism.
When combined with thermal, mechanical, and chemical stability, these properties often render them the materials of choice.
The Journal of Electroceramics is dedicated to providing a forum of discussion cutting across issues in electrical, optical, and magnetic ceramics. Driven by the need for miniaturization, cost, and enhanced functionality, the field of electroceramics is growing rapidly in many new directions. The Journal encourages discussions of resultant trends concerning silicon-electroceramic integration, nanotechnology, ceramic-polymer composites, grain boundary and defect engineering, etc.