Giulia Maiello, Andrea Bellodi, Alessia Cariani, Paolo Carpentieri, Laura Carugati, Davide Cicala, Alice Ferrari, Cristina Follesa, Alessandro Ligas, Paolo Sartor, Alice Sbrana, Peter Shum, Matteo Stefani, Lorenzo Talarico, Stefano Mariani, Tommaso Russo
{"title":"在基因库中捕鱼:采用拖网相关 eDNA 元探针大规模监测鱼类群落","authors":"Giulia Maiello, Andrea Bellodi, Alessia Cariani, Paolo Carpentieri, Laura Carugati, Davide Cicala, Alice Ferrari, Cristina Follesa, Alessandro Ligas, Paolo Sartor, Alice Sbrana, Peter Shum, Matteo Stefani, Lorenzo Talarico, Stefano Mariani, Tommaso Russo","doi":"10.1007/s11160-024-09874-y","DOIUrl":null,"url":null,"abstract":"<p>Marine biodiversity monitoring in the Mediterranean’s increasingly threatened ecosystems is crucial for effective ecosystem conservation and management. Here, we leveraged the Mediterranean International Trawl Survey program (MEDITS) to implement eDNA sampling through the recently tested ‘metaprobe’ procedure and characterize fish assemblages in three separate areas off the Italian coasts: Northern Adriatic Sea (NoAS), Ligurian and Northern Tyrrhenian Sea (LNTS), and Sardinian Sea (SaS). By combining the information from two homologous mitochondrial 12S metabarcodes––i.e., Elas02 and Tele02 targeting elasmobranchs and teleosts, respectively––we identified 108 species, over 60% of which overlapped with those caught by the trawl net. We produced an accurate reconstruction of fish community composition of the examined sites, reflecting differences in species assemblages linked with both geographic area and depth range. Metaprobe eDNA data consistently returned a biodiversity ‘bonus’ mostly consisting of pelagic taxa not captured through bottom trawl surveys, including rare and endangered taxa (e.g., elasmobranchs). Overall, the spatial characterisation of the assemblages across the surveyed areas was better delineated and more robust using eDNA metabarcoding than trawl data. Our results support the operationalisation of the metaprobe as a simple, inexpensive, versatile sampling tool, in association with pre-existing ship surveys, to overcome many of the limitations of marine data collection and strengthen marine management.</p>","PeriodicalId":21181,"journal":{"name":"Reviews in Fish Biology and Fisheries","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fishing in the gene-pool: implementing trawl-associated eDNA metaprobe for large scale monitoring of fish assemblages\",\"authors\":\"Giulia Maiello, Andrea Bellodi, Alessia Cariani, Paolo Carpentieri, Laura Carugati, Davide Cicala, Alice Ferrari, Cristina Follesa, Alessandro Ligas, Paolo Sartor, Alice Sbrana, Peter Shum, Matteo Stefani, Lorenzo Talarico, Stefano Mariani, Tommaso Russo\",\"doi\":\"10.1007/s11160-024-09874-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Marine biodiversity monitoring in the Mediterranean’s increasingly threatened ecosystems is crucial for effective ecosystem conservation and management. Here, we leveraged the Mediterranean International Trawl Survey program (MEDITS) to implement eDNA sampling through the recently tested ‘metaprobe’ procedure and characterize fish assemblages in three separate areas off the Italian coasts: Northern Adriatic Sea (NoAS), Ligurian and Northern Tyrrhenian Sea (LNTS), and Sardinian Sea (SaS). By combining the information from two homologous mitochondrial 12S metabarcodes––i.e., Elas02 and Tele02 targeting elasmobranchs and teleosts, respectively––we identified 108 species, over 60% of which overlapped with those caught by the trawl net. We produced an accurate reconstruction of fish community composition of the examined sites, reflecting differences in species assemblages linked with both geographic area and depth range. Metaprobe eDNA data consistently returned a biodiversity ‘bonus’ mostly consisting of pelagic taxa not captured through bottom trawl surveys, including rare and endangered taxa (e.g., elasmobranchs). Overall, the spatial characterisation of the assemblages across the surveyed areas was better delineated and more robust using eDNA metabarcoding than trawl data. Our results support the operationalisation of the metaprobe as a simple, inexpensive, versatile sampling tool, in association with pre-existing ship surveys, to overcome many of the limitations of marine data collection and strengthen marine management.</p>\",\"PeriodicalId\":21181,\"journal\":{\"name\":\"Reviews in Fish Biology and Fisheries\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Fish Biology and Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11160-024-09874-y\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Fish Biology and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11160-024-09874-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Fishing in the gene-pool: implementing trawl-associated eDNA metaprobe for large scale monitoring of fish assemblages
Marine biodiversity monitoring in the Mediterranean’s increasingly threatened ecosystems is crucial for effective ecosystem conservation and management. Here, we leveraged the Mediterranean International Trawl Survey program (MEDITS) to implement eDNA sampling through the recently tested ‘metaprobe’ procedure and characterize fish assemblages in three separate areas off the Italian coasts: Northern Adriatic Sea (NoAS), Ligurian and Northern Tyrrhenian Sea (LNTS), and Sardinian Sea (SaS). By combining the information from two homologous mitochondrial 12S metabarcodes––i.e., Elas02 and Tele02 targeting elasmobranchs and teleosts, respectively––we identified 108 species, over 60% of which overlapped with those caught by the trawl net. We produced an accurate reconstruction of fish community composition of the examined sites, reflecting differences in species assemblages linked with both geographic area and depth range. Metaprobe eDNA data consistently returned a biodiversity ‘bonus’ mostly consisting of pelagic taxa not captured through bottom trawl surveys, including rare and endangered taxa (e.g., elasmobranchs). Overall, the spatial characterisation of the assemblages across the surveyed areas was better delineated and more robust using eDNA metabarcoding than trawl data. Our results support the operationalisation of the metaprobe as a simple, inexpensive, versatile sampling tool, in association with pre-existing ship surveys, to overcome many of the limitations of marine data collection and strengthen marine management.
期刊介绍:
The subject matter is focused on include evolutionary biology, zoogeography, taxonomy, including biochemical taxonomy and stock identification, genetics and genetic manipulation, physiology, functional morphology, behaviour, ecology, fisheries assessment, development, exploitation and conservation. however, reviews will be published from any field of fish biology where the emphasis is placed on adaptation, function or exploitation in the whole organism.