{"title":"具有非相干场源的声学断层成像相关迭代法","authors":"K. V. Dmitriev","doi":"10.1134/S1063771023601000","DOIUrl":null,"url":null,"abstract":"<p>A method is proposed for reconstructing the acoustic parameters of a medium by iterative processing of the coherence matrices of the acoustic field of random sources, for some of which their power density is known. The possibilities of increasing the stability and accelerating the convergence of the method are discussed. The reconstruction results are compared with the functional-analytical approach based on the processing of the scattering amplitude<i>.</i></p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 2","pages":"209 - 219"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation Iterative Method of Acoustic Tomography with Incoherent Field Sources\",\"authors\":\"K. V. Dmitriev\",\"doi\":\"10.1134/S1063771023601000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A method is proposed for reconstructing the acoustic parameters of a medium by iterative processing of the coherence matrices of the acoustic field of random sources, for some of which their power density is known. The possibilities of increasing the stability and accelerating the convergence of the method are discussed. The reconstruction results are compared with the functional-analytical approach based on the processing of the scattering amplitude<i>.</i></p>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"70 2\",\"pages\":\"209 - 219\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771023601000\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023601000","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Correlation Iterative Method of Acoustic Tomography with Incoherent Field Sources
A method is proposed for reconstructing the acoustic parameters of a medium by iterative processing of the coherence matrices of the acoustic field of random sources, for some of which their power density is known. The possibilities of increasing the stability and accelerating the convergence of the method are discussed. The reconstruction results are compared with the functional-analytical approach based on the processing of the scattering amplitude.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.