I. K. Gimaltdinov, M. V. Stolpovsky, E. Y. Kochanova
{"title":"以多相喷流形式传播的水下发射物的声学诊断技术","authors":"I. K. Gimaltdinov, M. V. Stolpovsky, E. Y. Kochanova","doi":"10.1134/S1063771024601481","DOIUrl":null,"url":null,"abstract":"<div><p>The interaction of a pressure pulse with a gas–liquid zone, which is a section of a flooded multiphase jet consisting of a water–oil mixture and containing a methane bubble core, is numerically investigated. The possibility of determining the degree of expansion of the jet and the volume content of oil and gas in the jet from reflected signals is shown.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 2","pages":"242 - 247"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic Diagnostics of Underwater Emissions Propagating in the Form of a Multiphase Jet\",\"authors\":\"I. K. Gimaltdinov, M. V. Stolpovsky, E. Y. Kochanova\",\"doi\":\"10.1134/S1063771024601481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The interaction of a pressure pulse with a gas–liquid zone, which is a section of a flooded multiphase jet consisting of a water–oil mixture and containing a methane bubble core, is numerically investigated. The possibility of determining the degree of expansion of the jet and the volume content of oil and gas in the jet from reflected signals is shown.</p></div>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"70 2\",\"pages\":\"242 - 247\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771024601481\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771024601481","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Acoustic Diagnostics of Underwater Emissions Propagating in the Form of a Multiphase Jet
The interaction of a pressure pulse with a gas–liquid zone, which is a section of a flooded multiphase jet consisting of a water–oil mixture and containing a methane bubble core, is numerically investigated. The possibility of determining the degree of expansion of the jet and the volume content of oil and gas in the jet from reflected signals is shown.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.