{"title":"弱发散声束对水下声道中脉冲信号时空结构的影响","authors":"Yu. V. Petukhov, E. L. Borodina","doi":"10.1134/S1063771023600717","DOIUrl":null,"url":null,"abstract":"<div><p>On the example of an underwater sound channel typical of the Philippine Sea [1–3], it was established by numerical simulation using mode theory that during experimental studies of the propagation of explosive signals by R.A. Vadov [1–3], manifestation of a weakly divergent beam in the spatiotemporal structure of the acoustic field was observed for the first time: at certain locations of the corresponding points in the oceanic waveguide, in addition to classical quadruples of pulses, additional acoustic signals with small time delays with respect to them.</p></div>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":"70 2","pages":"344 - 349"},"PeriodicalIF":0.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of a Weakly Divergent Acoustic Beam on the Spatiotemporal Structure of Pulsed Signals in an Underwater Sound Channel\",\"authors\":\"Yu. V. Petukhov, E. L. Borodina\",\"doi\":\"10.1134/S1063771023600717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On the example of an underwater sound channel typical of the Philippine Sea [1–3], it was established by numerical simulation using mode theory that during experimental studies of the propagation of explosive signals by R.A. Vadov [1–3], manifestation of a weakly divergent beam in the spatiotemporal structure of the acoustic field was observed for the first time: at certain locations of the corresponding points in the oceanic waveguide, in addition to classical quadruples of pulses, additional acoustic signals with small time delays with respect to them.</p></div>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":\"70 2\",\"pages\":\"344 - 349\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771023600717\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023600717","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Effect of a Weakly Divergent Acoustic Beam on the Spatiotemporal Structure of Pulsed Signals in an Underwater Sound Channel
On the example of an underwater sound channel typical of the Philippine Sea [1–3], it was established by numerical simulation using mode theory that during experimental studies of the propagation of explosive signals by R.A. Vadov [1–3], manifestation of a weakly divergent beam in the spatiotemporal structure of the acoustic field was observed for the first time: at certain locations of the corresponding points in the oceanic waveguide, in addition to classical quadruples of pulses, additional acoustic signals with small time delays with respect to them.
期刊介绍:
Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.