专家和运营商对数据中心能效障碍的看法

IF 3.2 4区 工程技术 Q3 ENERGY & FUELS Energy Efficiency Pub Date : 2024-07-17 DOI:10.1007/s12053-024-10244-7
Alex C. Newkirk, Nichole Hanus, Christopher T. Payne
{"title":"专家和运营商对数据中心能效障碍的看法","authors":"Alex C. Newkirk,&nbsp;Nichole Hanus,&nbsp;Christopher T. Payne","doi":"10.1007/s12053-024-10244-7","DOIUrl":null,"url":null,"abstract":"<div><p>It was last estimated in 2016 that data centers (DCs) comprise approximately 2% of total US electricity consumption. However, this estimate is currently being updated to account for the massive increase in computing needs due to streaming, cryptocurrency, and artificial intelligence (AI). To prevent energy consumption that tracks with increasing computing needs, it is imperative we identify energy efficiency strategies and investments beyond the low-hanging fruit solutions. In a two-phased research approach, we ask: What non-technical barriers still impede energy efficiency (EE) practices and investments in the data center sector, and what can be done to overcome these barriers? In particular, we are focused on social and organizational barriers to EE. In Phase I, we performed a literature review and found that technical solutions are abundant in the literature, but fail to address the top-down cultural shifts that need to take place in order to adapt new energy efficiency strategies. In Phase II, reported here, we interviewed 16 data center operators/experts to ground-truth our literature findings. Our interview protocols focus on three aspects of DC decision-making: procurement practices, metrics and monitoring, and perceived barriers to energy efficiency. We find that vendors are the key drivers of procurement decisions, advanced efficiency metrics are facility-specific, and there is convergence in the design of advanced facilities due to the heat density of parallelized infrastructure. Our ultimate goals for our research are to design DC decarbonization policies that target organizational structure, empower individual staff, and foster a supportive external market.</p></div>","PeriodicalId":537,"journal":{"name":"Energy Efficiency","volume":"17 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12053-024-10244-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Expert and operator perspectives on barriers to energy efficiency in data centers\",\"authors\":\"Alex C. Newkirk,&nbsp;Nichole Hanus,&nbsp;Christopher T. Payne\",\"doi\":\"10.1007/s12053-024-10244-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It was last estimated in 2016 that data centers (DCs) comprise approximately 2% of total US electricity consumption. However, this estimate is currently being updated to account for the massive increase in computing needs due to streaming, cryptocurrency, and artificial intelligence (AI). To prevent energy consumption that tracks with increasing computing needs, it is imperative we identify energy efficiency strategies and investments beyond the low-hanging fruit solutions. In a two-phased research approach, we ask: What non-technical barriers still impede energy efficiency (EE) practices and investments in the data center sector, and what can be done to overcome these barriers? In particular, we are focused on social and organizational barriers to EE. In Phase I, we performed a literature review and found that technical solutions are abundant in the literature, but fail to address the top-down cultural shifts that need to take place in order to adapt new energy efficiency strategies. In Phase II, reported here, we interviewed 16 data center operators/experts to ground-truth our literature findings. Our interview protocols focus on three aspects of DC decision-making: procurement practices, metrics and monitoring, and perceived barriers to energy efficiency. We find that vendors are the key drivers of procurement decisions, advanced efficiency metrics are facility-specific, and there is convergence in the design of advanced facilities due to the heat density of parallelized infrastructure. Our ultimate goals for our research are to design DC decarbonization policies that target organizational structure, empower individual staff, and foster a supportive external market.</p></div>\",\"PeriodicalId\":537,\"journal\":{\"name\":\"Energy Efficiency\",\"volume\":\"17 6\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12053-024-10244-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Efficiency\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12053-024-10244-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Efficiency","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12053-024-10244-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

据 2016 年的最新估计,数据中心(DC)约占美国总耗电量的 2%。不过,这一估计目前正在更新,以考虑到流媒体、加密货币和人工智能(AI)带来的计算需求的大幅增长。为了防止能源消耗与不断增长的计算需求同步,我们必须确定能效战略和投资,而不能仅仅局限于 "低垂果实 "解决方案。通过分两个阶段的研究方法,我们提出了以下问题:哪些非技术障碍仍然阻碍着数据中心领域的能效(EE)实践和投资,以及如何才能克服这些障碍?我们尤其关注节能的社会和组织障碍。在第一阶段,我们进行了文献综述,发现技术解决方案在文献中比比皆是,但却无法解决自上而下的文化转变问题,而这正是适应新的能效战略所必需的。在本文所报告的第二阶段,我们采访了 16 位数据中心运营商/专家,以证实我们的文献研究结果。我们的访谈协议侧重于数据中心决策的三个方面:采购实践、指标和监控,以及能效方面的感知障碍。我们发现,供应商是采购决策的主要驱动力,先进的能效指标是针对具体设施的,由于并行化基础设施的热密度,先进设施的设计趋于一致。我们研究的最终目标是设计针对组织结构的直流脱碳政策,赋予员工个人权力,并促进支持性的外部市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Expert and operator perspectives on barriers to energy efficiency in data centers

It was last estimated in 2016 that data centers (DCs) comprise approximately 2% of total US electricity consumption. However, this estimate is currently being updated to account for the massive increase in computing needs due to streaming, cryptocurrency, and artificial intelligence (AI). To prevent energy consumption that tracks with increasing computing needs, it is imperative we identify energy efficiency strategies and investments beyond the low-hanging fruit solutions. In a two-phased research approach, we ask: What non-technical barriers still impede energy efficiency (EE) practices and investments in the data center sector, and what can be done to overcome these barriers? In particular, we are focused on social and organizational barriers to EE. In Phase I, we performed a literature review and found that technical solutions are abundant in the literature, but fail to address the top-down cultural shifts that need to take place in order to adapt new energy efficiency strategies. In Phase II, reported here, we interviewed 16 data center operators/experts to ground-truth our literature findings. Our interview protocols focus on three aspects of DC decision-making: procurement practices, metrics and monitoring, and perceived barriers to energy efficiency. We find that vendors are the key drivers of procurement decisions, advanced efficiency metrics are facility-specific, and there is convergence in the design of advanced facilities due to the heat density of parallelized infrastructure. Our ultimate goals for our research are to design DC decarbonization policies that target organizational structure, empower individual staff, and foster a supportive external market.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Efficiency
Energy Efficiency ENERGY & FUELS-ENERGY & FUELS
CiteScore
5.80
自引率
6.50%
发文量
59
审稿时长
>12 weeks
期刊介绍: The journal Energy Efficiency covers wide-ranging aspects of energy efficiency in the residential, tertiary, industrial and transport sectors. Coverage includes a number of different topics and disciplines including energy efficiency policies at local, regional, national and international levels; long term impact of energy efficiency; technologies to improve energy efficiency; consumer behavior and the dynamics of consumption; socio-economic impacts of energy efficiency measures; energy efficiency as a virtual utility; transportation issues; building issues; energy management systems and energy services; energy planning and risk assessment; energy efficiency in developing countries and economies in transition; non-energy benefits of energy efficiency and opportunities for policy integration; energy education and training, and emerging technologies. See Aims and Scope for more details.
期刊最新文献
A step towards energy efficiency in G7 countries: analyzing the role of economic complexity and shadow economy on energy intensity Pathways to commercial building plug and process load efficiency and control Wind-driven and buoyancy effects for modeling natural ventilation in buildings at urban scale A mixed-method approach to study the impacts of energy micro-generation combined with appliance-level feedback on everyday practices Do environment-related technologies, urbanization, trade openness, and income impact energy consumption and intensity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1