通过约束满足评估面向任务的对话一致性

Tiziano Labruna, Bernardo Magnini
{"title":"通过约束满足评估面向任务的对话一致性","authors":"Tiziano Labruna, Bernardo Magnini","doi":"arxiv-2407.11857","DOIUrl":null,"url":null,"abstract":"Task-oriented dialogues must maintain consistency both within the dialogue\nitself, ensuring logical coherence across turns, and with the conversational\ndomain, accurately reflecting external knowledge. We propose to conceptualize\ndialogue consistency as a Constraint Satisfaction Problem (CSP), wherein\nvariables represent segments of the dialogue referencing the conversational\ndomain, and constraints among variables reflect dialogue properties, including\nlinguistic, conversational, and domain-based aspects. To demonstrate the\nfeasibility of the approach, we utilize a CSP solver to detect inconsistencies\nin dialogues re-lexicalized by an LLM. Our findings indicate that: (i) CSP is\neffective to detect dialogue inconsistencies; and (ii) consistent dialogue\nre-lexicalization is challenging for state-of-the-art LLMs, achieving only a\n0.15 accuracy rate when compared to a CSP solver. Furthermore, through an\nablation study, we reveal that constraints derived from domain knowledge pose\nthe greatest difficulty in being respected. We argue that CSP captures core\nproperties of dialogue consistency that have been poorly considered by\napproaches based on component pipelines.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Task-Oriented Dialogue Consistency through Constraint Satisfaction\",\"authors\":\"Tiziano Labruna, Bernardo Magnini\",\"doi\":\"arxiv-2407.11857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Task-oriented dialogues must maintain consistency both within the dialogue\\nitself, ensuring logical coherence across turns, and with the conversational\\ndomain, accurately reflecting external knowledge. We propose to conceptualize\\ndialogue consistency as a Constraint Satisfaction Problem (CSP), wherein\\nvariables represent segments of the dialogue referencing the conversational\\ndomain, and constraints among variables reflect dialogue properties, including\\nlinguistic, conversational, and domain-based aspects. To demonstrate the\\nfeasibility of the approach, we utilize a CSP solver to detect inconsistencies\\nin dialogues re-lexicalized by an LLM. Our findings indicate that: (i) CSP is\\neffective to detect dialogue inconsistencies; and (ii) consistent dialogue\\nre-lexicalization is challenging for state-of-the-art LLMs, achieving only a\\n0.15 accuracy rate when compared to a CSP solver. Furthermore, through an\\nablation study, we reveal that constraints derived from domain knowledge pose\\nthe greatest difficulty in being respected. We argue that CSP captures core\\nproperties of dialogue consistency that have been poorly considered by\\napproaches based on component pipelines.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.11857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.11857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以任务为导向的对话必须保持对话本身的一致性,确保各轮对话的逻辑连贯性,以及与对话领域的一致性,准确反映外部知识。我们建议将对话一致性概念化为一个约束满足问题(Constraint Satisfaction Problem,CSP),其中变量代表对话中涉及会话领域的片段,变量之间的约束反映了对话的属性,包括语言、会话和基于领域的方面。为了证明这种方法的可行性,我们利用 CSP 求解器检测了由 LLM 重新词典化的对话中的不一致之处。我们的研究结果表明(i) CSP 可以有效检测对话中的不一致之处;(ii) 对于最先进的 LLM 而言,一致的对话再词汇化具有挑战性,与 CSP 求解器相比,其准确率仅为 0.15。此外,通过模拟研究,我们发现源于领域知识的约束最难得到遵守。我们认为,CSP 抓住了对话一致性的核心特性,而基于组件流水线的方法对这些特性考虑不周。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating Task-Oriented Dialogue Consistency through Constraint Satisfaction
Task-oriented dialogues must maintain consistency both within the dialogue itself, ensuring logical coherence across turns, and with the conversational domain, accurately reflecting external knowledge. We propose to conceptualize dialogue consistency as a Constraint Satisfaction Problem (CSP), wherein variables represent segments of the dialogue referencing the conversational domain, and constraints among variables reflect dialogue properties, including linguistic, conversational, and domain-based aspects. To demonstrate the feasibility of the approach, we utilize a CSP solver to detect inconsistencies in dialogues re-lexicalized by an LLM. Our findings indicate that: (i) CSP is effective to detect dialogue inconsistencies; and (ii) consistent dialogue re-lexicalization is challenging for state-of-the-art LLMs, achieving only a 0.15 accuracy rate when compared to a CSP solver. Furthermore, through an ablation study, we reveal that constraints derived from domain knowledge pose the greatest difficulty in being respected. We argue that CSP captures core properties of dialogue consistency that have been poorly considered by approaches based on component pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1