人工智能时代预测伴有门静脉瘤栓的肝细胞癌的研究进展

IF 4.2 3区 医学 Q2 ONCOLOGY Journal of Hepatocellular Carcinoma Pub Date : 2024-07-17 DOI:10.2147/jhc.s474922
Yaduo Li, Ningning Fan, Xu He, Jianjun Zhu, Jie Zhang, Ligong Lu
{"title":"人工智能时代预测伴有门静脉瘤栓的肝细胞癌的研究进展","authors":"Yaduo Li, Ningning Fan, Xu He, Jianjun Zhu, Jie Zhang, Ligong Lu","doi":"10.2147/jhc.s474922","DOIUrl":null,"url":null,"abstract":"<strong>Abstract:</strong> Hepatocellular Carcinoma (HCC) is a condition associated with significant morbidity and mortality. The presence of Portal Vein Tumour Thrombus (PVTT) typically signifies advanced disease stages and poor prognosis. Artificial intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has emerged as a promising tool for extracting quantitative data from medical images. AI is increasingly integrated into the imaging omics workflow and has become integral to various medical disciplines. This paper provides a comprehensive review of the mechanisms underlying the formation and progression of PVTT, as well as its impact on clinical management and prognosis. Additionally, it outlines the advancements in AI for predicting the diagnosis of HCC and the development of PVTT. The limitations of existing studies are critically evaluated, and potential future research directions in the realm of imaging for the diagnostic prediction of HCC and PVTT are discussed, with the ultimate goal of enhancing survival outcomes for PVTT patients.<br/><br/><strong>Keywords:</strong> hepatocellular carcinoma, portal vein tumour thrombus, imaging omics, prediction, artificial intelligence<br/>","PeriodicalId":15906,"journal":{"name":"Journal of Hepatocellular Carcinoma","volume":"75 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress in Predicting Hepatocellular Carcinoma with Portal Vein Tumour Thrombus in the Era of Artificial Intelligence\",\"authors\":\"Yaduo Li, Ningning Fan, Xu He, Jianjun Zhu, Jie Zhang, Ligong Lu\",\"doi\":\"10.2147/jhc.s474922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract:</strong> Hepatocellular Carcinoma (HCC) is a condition associated with significant morbidity and mortality. The presence of Portal Vein Tumour Thrombus (PVTT) typically signifies advanced disease stages and poor prognosis. Artificial intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has emerged as a promising tool for extracting quantitative data from medical images. AI is increasingly integrated into the imaging omics workflow and has become integral to various medical disciplines. This paper provides a comprehensive review of the mechanisms underlying the formation and progression of PVTT, as well as its impact on clinical management and prognosis. Additionally, it outlines the advancements in AI for predicting the diagnosis of HCC and the development of PVTT. The limitations of existing studies are critically evaluated, and potential future research directions in the realm of imaging for the diagnostic prediction of HCC and PVTT are discussed, with the ultimate goal of enhancing survival outcomes for PVTT patients.<br/><br/><strong>Keywords:</strong> hepatocellular carcinoma, portal vein tumour thrombus, imaging omics, prediction, artificial intelligence<br/>\",\"PeriodicalId\":15906,\"journal\":{\"name\":\"Journal of Hepatocellular Carcinoma\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hepatocellular Carcinoma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/jhc.s474922\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hepatocellular Carcinoma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/jhc.s474922","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要:肝细胞癌(HCC)是一种发病率和死亡率都很高的疾病。门静脉肿瘤血栓(PVTT)的出现通常意味着疾病的晚期和不良预后。人工智能(AI),尤其是机器学习(ML)和深度学习(DL),已成为从医学影像中提取定量数据的一种前景广阔的工具。人工智能正日益融入成像全息工作流程,并已成为各医学学科不可或缺的一部分。本文全面回顾了 PVTT 的形成和发展机制,以及其对临床管理和预后的影响。此外,本文还概述了人工智能在预测 HCC 诊断和 PVTT 发展方面取得的进展。本文对现有研究的局限性进行了批判性评估,并讨论了影像学领域用于 HCC 和 PVTT 诊断预测的潜在未来研究方向,最终目标是提高 PVTT 患者的生存率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research Progress in Predicting Hepatocellular Carcinoma with Portal Vein Tumour Thrombus in the Era of Artificial Intelligence
Abstract: Hepatocellular Carcinoma (HCC) is a condition associated with significant morbidity and mortality. The presence of Portal Vein Tumour Thrombus (PVTT) typically signifies advanced disease stages and poor prognosis. Artificial intelligence (AI), particularly Machine Learning (ML) and Deep Learning (DL), has emerged as a promising tool for extracting quantitative data from medical images. AI is increasingly integrated into the imaging omics workflow and has become integral to various medical disciplines. This paper provides a comprehensive review of the mechanisms underlying the formation and progression of PVTT, as well as its impact on clinical management and prognosis. Additionally, it outlines the advancements in AI for predicting the diagnosis of HCC and the development of PVTT. The limitations of existing studies are critically evaluated, and potential future research directions in the realm of imaging for the diagnostic prediction of HCC and PVTT are discussed, with the ultimate goal of enhancing survival outcomes for PVTT patients.

Keywords: hepatocellular carcinoma, portal vein tumour thrombus, imaging omics, prediction, artificial intelligence
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
2.40%
发文量
108
审稿时长
16 weeks
期刊最新文献
Yiqi Liangxue Jiedu Prescription Inhibited the Canonical Wnt Pathway to Prevent Hepatocellular Precancerous Lesions. Sintilimab Plus Lenvatinib with or Without Radiotherapy for Advanced Hepatocellular Carcinoma with Pulmonary Metastasis. Diabetes Mellitus Negatively Impacts Outcomes of HBV-Related Hepatocellular Carcinoma Following Thermal Ablation. scRNA-Seq Analysis Revealed CAFs Regulating HCC Cells via PTN Signaling. Construction of a 2.5D Deep Learning Model for Predicting Early Postoperative Recurrence of Hepatocellular Carcinoma Using Multi-View and Multi-Phase CT Images.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1