利用修正的时序卷积前馈网络改进集群微电网的负载需求预测

IF 1.7 4区 计算机科学 Q3 TELECOMMUNICATIONS Telecommunication Systems Pub Date : 2024-07-17 DOI:10.1007/s11235-024-01187-6
E. Poongulali, K. Selvaraj
{"title":"利用修正的时序卷积前馈网络改进集群微电网的负载需求预测","authors":"E. Poongulali, K. Selvaraj","doi":"10.1007/s11235-024-01187-6","DOIUrl":null,"url":null,"abstract":"<p>This research addresses the challenge of accurate load forecasting in cluster microgrids, where distributed energy systems interlink to operate seamlessly. As renewable energy sources become more widespread, ensuring a consistent and reliable power supply in the face of variable weather conditions is a significant challenge for power providers. The variability in energy consumption patterns, influenced by human behavior and environmental conditions, further complicates load prediction. The inherent instability of solar and wind energies adds complexity to forecasting load demand accurately. This paper suggests a solution in addressing some challenges by proposing a Modified Temporal Convolutional Feed Forward Network (MTCFN) for load forecasting in cluster microgrids. The Fire Hawk Optimization algorithm is employed to determine optimal configurations, addressing the intricacies of this complex optimization problem. Data collected from the Microgrid Market Share and Forecast 2024–2032 report, the efficiency of the proposed approach is evaluated through metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), and R-squared. The RMSE, MSE, MAE, MAPE, and R-squared values of the MTCFN are 0.4%, 1.5%, 0.6%, 6.8%, and 0.8%, respectively. The optimization algorithm's effectiveness is cross-validated through rigorous testing, training, and validation processes, revealing that the FFNN model based on the Fire Hawk Optimization algorithm yields superior load forecasting results. This research contributes to the advancement of signal, image, and video processing in the context of resilient and accurate energy management in cluster microgrids.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"38 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved load demand prediction for cluster microgrids using modified temporal convolutional feed forward network\",\"authors\":\"E. Poongulali, K. Selvaraj\",\"doi\":\"10.1007/s11235-024-01187-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research addresses the challenge of accurate load forecasting in cluster microgrids, where distributed energy systems interlink to operate seamlessly. As renewable energy sources become more widespread, ensuring a consistent and reliable power supply in the face of variable weather conditions is a significant challenge for power providers. The variability in energy consumption patterns, influenced by human behavior and environmental conditions, further complicates load prediction. The inherent instability of solar and wind energies adds complexity to forecasting load demand accurately. This paper suggests a solution in addressing some challenges by proposing a Modified Temporal Convolutional Feed Forward Network (MTCFN) for load forecasting in cluster microgrids. The Fire Hawk Optimization algorithm is employed to determine optimal configurations, addressing the intricacies of this complex optimization problem. Data collected from the Microgrid Market Share and Forecast 2024–2032 report, the efficiency of the proposed approach is evaluated through metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), and R-squared. The RMSE, MSE, MAE, MAPE, and R-squared values of the MTCFN are 0.4%, 1.5%, 0.6%, 6.8%, and 0.8%, respectively. The optimization algorithm's effectiveness is cross-validated through rigorous testing, training, and validation processes, revealing that the FFNN model based on the Fire Hawk Optimization algorithm yields superior load forecasting results. This research contributes to the advancement of signal, image, and video processing in the context of resilient and accurate energy management in cluster microgrids.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01187-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01187-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项研究解决了在集群微电网中准确预测负荷的难题,在集群微电网中,分布式能源系统相互连接,无缝运行。随着可再生能源的日益普及,面对多变的天气条件,如何确保稳定可靠的电力供应是电力供应商面临的一项重大挑战。受人类行为和环境条件的影响,能源消费模式的多变性使负荷预测变得更加复杂。太阳能和风能固有的不稳定性增加了准确预测负荷需求的复杂性。本文提出了一种用于集群微电网负荷预测的修正时序卷积前馈网络 (MTCFN),为应对这些挑战提供了解决方案。本文采用火鹰优化算法来确定最佳配置,从而解决这一复杂的优化问题。从《2024-2032 年微电网市场份额与预测》报告中收集的数据,通过平均绝对误差 (MAE)、均方根误差 (RMSE)、平均绝对百分比误差 (MAPE)、均方误差 (MSE) 和 R 平方等指标来评估所提出方法的效率。MTCFN 的 RMSE、MSE、MAE、MAPE 和 R 平方值分别为 0.4%、1.5%、0.6%、6.8% 和 0.8%。通过严格的测试、训练和验证过程,交叉验证了优化算法的有效性,结果表明基于火鹰优化算法的 FFNN 模型能产生更优越的负荷预测结果。这项研究有助于在集群微电网弹性和精确能源管理的背景下推动信号、图像和视频处理的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved load demand prediction for cluster microgrids using modified temporal convolutional feed forward network

This research addresses the challenge of accurate load forecasting in cluster microgrids, where distributed energy systems interlink to operate seamlessly. As renewable energy sources become more widespread, ensuring a consistent and reliable power supply in the face of variable weather conditions is a significant challenge for power providers. The variability in energy consumption patterns, influenced by human behavior and environmental conditions, further complicates load prediction. The inherent instability of solar and wind energies adds complexity to forecasting load demand accurately. This paper suggests a solution in addressing some challenges by proposing a Modified Temporal Convolutional Feed Forward Network (MTCFN) for load forecasting in cluster microgrids. The Fire Hawk Optimization algorithm is employed to determine optimal configurations, addressing the intricacies of this complex optimization problem. Data collected from the Microgrid Market Share and Forecast 2024–2032 report, the efficiency of the proposed approach is evaluated through metrics such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Mean Square Error (MSE), and R-squared. The RMSE, MSE, MAE, MAPE, and R-squared values of the MTCFN are 0.4%, 1.5%, 0.6%, 6.8%, and 0.8%, respectively. The optimization algorithm's effectiveness is cross-validated through rigorous testing, training, and validation processes, revealing that the FFNN model based on the Fire Hawk Optimization algorithm yields superior load forecasting results. This research contributes to the advancement of signal, image, and video processing in the context of resilient and accurate energy management in cluster microgrids.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Telecommunication Systems
Telecommunication Systems 工程技术-电信学
CiteScore
5.40
自引率
8.00%
发文量
105
审稿时长
6.0 months
期刊介绍: Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering: Performance Evaluation of Wide Area and Local Networks; Network Interconnection; Wire, wireless, Adhoc, mobile networks; Impact of New Services (economic and organizational impact); Fiberoptics and photonic switching; DSL, ADSL, cable TV and their impact; Design and Analysis Issues in Metropolitan Area Networks; Networking Protocols; Dynamics and Capacity Expansion of Telecommunication Systems; Multimedia Based Systems, Their Design Configuration and Impact; Configuration of Distributed Systems; Pricing for Networking and Telecommunication Services; Performance Analysis of Local Area Networks; Distributed Group Decision Support Systems; Configuring Telecommunication Systems with Reliability and Availability; Cost Benefit Analysis and Economic Impact of Telecommunication Systems; Standardization and Regulatory Issues; Security, Privacy and Encryption in Telecommunication Systems; Cellular, Mobile and Satellite Based Systems.
期刊最新文献
Next-cell prediction with LSTM based on vehicle mobility for 5G mc-IoT slices Secure positioning of wireless sensor networks against wormhole attacks Safeguarding the Internet of Health Things: advancements, challenges, and trust-based solution Optimized task offloading for federated learning based on β-skeleton graph in edge computing Noise robust automatic speaker verification systems: review and analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1