{"title":"化疗对乳腺癌女性患者骨矿物质密度和微结构的影响。","authors":"Sayaka Kuba, Ryuji Niimi, Ko Chiba, Megumi Matsumoto, Yuki Hara, Ayako Fukushima, Aya Tanaka, Momoko Akashi, Michi Morita, Eiko Inamasu, Ryota Otsubo, Kengo Kanetaka, Makoto Osaki, Keitaro Matsumoto, Susumu Eguchi","doi":"10.1007/s00774-024-01526-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Chemotherapy involves the administration of steroids to prevent nausea and vomiting; however, its effect on bone microstructure remains unknown. This study aimed to evaluate the changes in bone mineral density (BMD) and bone microstructure associated with chemotherapy using high-resolution peripheral quantitative computed tomography (HR-pQCT) in women with early breast cancer.</p><p><strong>Materials and methods: </strong>This prospective single-arm observational study included non-osteoporotic, postmenopausal women with breast cancer. The patients underwent dual-energy X-ray absorptiometry (DXA), HR-pQCT, and tartrate-resistant acid phosphatase-5b (TRACP-5b) or procollagen type-I N-terminal propeptide (P1NP) measurements at baseline, end of chemotherapy, and 6 months after chemotherapy. The primary endpoint was the change in total volumetric BMD at the distal tibia and radius.</p><p><strong>Results: </strong>Eighteen women were included in the study (median age: 57 years; range: 55-62 years). At 6 months after chemotherapy, HR-pQCT indicated a significant decrease in total volumetric BMD (median: distal tibia -4.5%, p < 0.01; distal radius -2.3%, p < 0.01), cortical volumetric BMD (-1.9%, p < 0.01; -0.8%, p = 0.07, respectively), and trabecular volumetric BMD (-1.1%, p = 0.09; -3.0%, p < 0.01, respectively). The DXA BMD also showed a significant decrease in the lumbar spine (median: -4.5%, p < 0.01), total hip (-5.5%, p < 0.01), and femoral neck (-4.2%, p < 0.01). TRACP-5b and P1NP levels were significantly increased at the end of chemotherapy compared to baseline.</p><p><strong>Conclusion: </strong>Postmenopausal women undergoing chemotherapy for early breast cancer experienced significant BMD deterioration in weight-bearing bone, which was further reduced 6 months after chemotherapy.</p>","PeriodicalId":15116,"journal":{"name":"Journal of Bone and Mineral Metabolism","volume":" ","pages":"591-599"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemotherapy effects on bone mineral density and microstructure in women with breast cancer.\",\"authors\":\"Sayaka Kuba, Ryuji Niimi, Ko Chiba, Megumi Matsumoto, Yuki Hara, Ayako Fukushima, Aya Tanaka, Momoko Akashi, Michi Morita, Eiko Inamasu, Ryota Otsubo, Kengo Kanetaka, Makoto Osaki, Keitaro Matsumoto, Susumu Eguchi\",\"doi\":\"10.1007/s00774-024-01526-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Chemotherapy involves the administration of steroids to prevent nausea and vomiting; however, its effect on bone microstructure remains unknown. This study aimed to evaluate the changes in bone mineral density (BMD) and bone microstructure associated with chemotherapy using high-resolution peripheral quantitative computed tomography (HR-pQCT) in women with early breast cancer.</p><p><strong>Materials and methods: </strong>This prospective single-arm observational study included non-osteoporotic, postmenopausal women with breast cancer. The patients underwent dual-energy X-ray absorptiometry (DXA), HR-pQCT, and tartrate-resistant acid phosphatase-5b (TRACP-5b) or procollagen type-I N-terminal propeptide (P1NP) measurements at baseline, end of chemotherapy, and 6 months after chemotherapy. The primary endpoint was the change in total volumetric BMD at the distal tibia and radius.</p><p><strong>Results: </strong>Eighteen women were included in the study (median age: 57 years; range: 55-62 years). At 6 months after chemotherapy, HR-pQCT indicated a significant decrease in total volumetric BMD (median: distal tibia -4.5%, p < 0.01; distal radius -2.3%, p < 0.01), cortical volumetric BMD (-1.9%, p < 0.01; -0.8%, p = 0.07, respectively), and trabecular volumetric BMD (-1.1%, p = 0.09; -3.0%, p < 0.01, respectively). The DXA BMD also showed a significant decrease in the lumbar spine (median: -4.5%, p < 0.01), total hip (-5.5%, p < 0.01), and femoral neck (-4.2%, p < 0.01). TRACP-5b and P1NP levels were significantly increased at the end of chemotherapy compared to baseline.</p><p><strong>Conclusion: </strong>Postmenopausal women undergoing chemotherapy for early breast cancer experienced significant BMD deterioration in weight-bearing bone, which was further reduced 6 months after chemotherapy.</p>\",\"PeriodicalId\":15116,\"journal\":{\"name\":\"Journal of Bone and Mineral Metabolism\",\"volume\":\" \",\"pages\":\"591-599\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bone and Mineral Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00774-024-01526-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone and Mineral Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00774-024-01526-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Chemotherapy effects on bone mineral density and microstructure in women with breast cancer.
Introduction: Chemotherapy involves the administration of steroids to prevent nausea and vomiting; however, its effect on bone microstructure remains unknown. This study aimed to evaluate the changes in bone mineral density (BMD) and bone microstructure associated with chemotherapy using high-resolution peripheral quantitative computed tomography (HR-pQCT) in women with early breast cancer.
Materials and methods: This prospective single-arm observational study included non-osteoporotic, postmenopausal women with breast cancer. The patients underwent dual-energy X-ray absorptiometry (DXA), HR-pQCT, and tartrate-resistant acid phosphatase-5b (TRACP-5b) or procollagen type-I N-terminal propeptide (P1NP) measurements at baseline, end of chemotherapy, and 6 months after chemotherapy. The primary endpoint was the change in total volumetric BMD at the distal tibia and radius.
Results: Eighteen women were included in the study (median age: 57 years; range: 55-62 years). At 6 months after chemotherapy, HR-pQCT indicated a significant decrease in total volumetric BMD (median: distal tibia -4.5%, p < 0.01; distal radius -2.3%, p < 0.01), cortical volumetric BMD (-1.9%, p < 0.01; -0.8%, p = 0.07, respectively), and trabecular volumetric BMD (-1.1%, p = 0.09; -3.0%, p < 0.01, respectively). The DXA BMD also showed a significant decrease in the lumbar spine (median: -4.5%, p < 0.01), total hip (-5.5%, p < 0.01), and femoral neck (-4.2%, p < 0.01). TRACP-5b and P1NP levels were significantly increased at the end of chemotherapy compared to baseline.
Conclusion: Postmenopausal women undergoing chemotherapy for early breast cancer experienced significant BMD deterioration in weight-bearing bone, which was further reduced 6 months after chemotherapy.
期刊介绍:
The Journal of Bone and Mineral Metabolism (JBMM) provides an international forum for researchers and clinicians to present and discuss topics relevant to bone, teeth, and mineral metabolism, as well as joint and musculoskeletal disorders. The journal welcomes the submission of manuscripts from any country. Membership in the society is not a prerequisite for submission. Acceptance is based on the originality, significance, and validity of the material presented. The journal is aimed at researchers and clinicians dedicated to improvements in research, development, and patient-care in the fields of bone and mineral metabolism.