{"title":"人工智能心电图可预测未来起搏器植入和不良心血管事件。","authors":"Yuan Hung, Chin Lin, Chin-Sheng Lin, Chiao-Chin Lee, Wen-Hui Fang, Chia-Cheng Lee, Chih-Hung Wang, Dung-Jang Tsai","doi":"10.1007/s10916-024-02088-6","DOIUrl":null,"url":null,"abstract":"<p><p>Medical advances prolonging life have led to more permanent pacemaker implants. When pacemaker implantation (PMI) is commonly caused by sick sinus syndrome or conduction disorders, predicting PMI is challenging, as patients often experience related symptoms. This study was designed to create a deep learning model (DLM) for predicting future PMI from ECG data and assess its ability to predict future cardiovascular events. In this study, a DLM was trained on a dataset of 158,471 ECGs from 42,903 academic medical center patients, with additional validation involving 25,640 medical center patients and 26,538 community hospital patients. Primary analysis focused on predicting PMI within 90 days, while all-cause mortality, cardiovascular disease (CVD) mortality, and the development of various cardiovascular conditions were addressed with secondary analysis. The study's raw ECG DLM achieved area under the curve (AUC) values of 0.870, 0.878, and 0.883 for PMI prediction within 30, 60, and 90 days, respectively, along with sensitivities exceeding 82.0% and specificities over 81.9% in the internal validation. Significant ECG features included the PR interval, corrected QT interval, heart rate, QRS duration, P-wave axis, T-wave axis, and QRS complex axis. The AI-predicted PMI group had higher risks of PMI after 90 days (hazard ratio [HR]: 7.49, 95% CI: 5.40-10.39), all-cause mortality (HR: 1.91, 95% CI: 1.74-2.10), CVD mortality (HR: 3.53, 95% CI: 2.73-4.57), and new-onset adverse cardiovascular events. External validation confirmed the model's accuracy. Through ECG analyses, our AI DLM can alert clinicians and patients to the possibility of future PMI and related mortality and cardiovascular risks, aiding in timely patient intervention.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"48 1","pages":"67"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence-Enabled Electrocardiography Predicts Future Pacemaker Implantation and Adverse Cardiovascular Events.\",\"authors\":\"Yuan Hung, Chin Lin, Chin-Sheng Lin, Chiao-Chin Lee, Wen-Hui Fang, Chia-Cheng Lee, Chih-Hung Wang, Dung-Jang Tsai\",\"doi\":\"10.1007/s10916-024-02088-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Medical advances prolonging life have led to more permanent pacemaker implants. When pacemaker implantation (PMI) is commonly caused by sick sinus syndrome or conduction disorders, predicting PMI is challenging, as patients often experience related symptoms. This study was designed to create a deep learning model (DLM) for predicting future PMI from ECG data and assess its ability to predict future cardiovascular events. In this study, a DLM was trained on a dataset of 158,471 ECGs from 42,903 academic medical center patients, with additional validation involving 25,640 medical center patients and 26,538 community hospital patients. Primary analysis focused on predicting PMI within 90 days, while all-cause mortality, cardiovascular disease (CVD) mortality, and the development of various cardiovascular conditions were addressed with secondary analysis. The study's raw ECG DLM achieved area under the curve (AUC) values of 0.870, 0.878, and 0.883 for PMI prediction within 30, 60, and 90 days, respectively, along with sensitivities exceeding 82.0% and specificities over 81.9% in the internal validation. Significant ECG features included the PR interval, corrected QT interval, heart rate, QRS duration, P-wave axis, T-wave axis, and QRS complex axis. The AI-predicted PMI group had higher risks of PMI after 90 days (hazard ratio [HR]: 7.49, 95% CI: 5.40-10.39), all-cause mortality (HR: 1.91, 95% CI: 1.74-2.10), CVD mortality (HR: 3.53, 95% CI: 2.73-4.57), and new-onset adverse cardiovascular events. External validation confirmed the model's accuracy. Through ECG analyses, our AI DLM can alert clinicians and patients to the possibility of future PMI and related mortality and cardiovascular risks, aiding in timely patient intervention.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"48 1\",\"pages\":\"67\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-024-02088-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02088-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Medical advances prolonging life have led to more permanent pacemaker implants. When pacemaker implantation (PMI) is commonly caused by sick sinus syndrome or conduction disorders, predicting PMI is challenging, as patients often experience related symptoms. This study was designed to create a deep learning model (DLM) for predicting future PMI from ECG data and assess its ability to predict future cardiovascular events. In this study, a DLM was trained on a dataset of 158,471 ECGs from 42,903 academic medical center patients, with additional validation involving 25,640 medical center patients and 26,538 community hospital patients. Primary analysis focused on predicting PMI within 90 days, while all-cause mortality, cardiovascular disease (CVD) mortality, and the development of various cardiovascular conditions were addressed with secondary analysis. The study's raw ECG DLM achieved area under the curve (AUC) values of 0.870, 0.878, and 0.883 for PMI prediction within 30, 60, and 90 days, respectively, along with sensitivities exceeding 82.0% and specificities over 81.9% in the internal validation. Significant ECG features included the PR interval, corrected QT interval, heart rate, QRS duration, P-wave axis, T-wave axis, and QRS complex axis. The AI-predicted PMI group had higher risks of PMI after 90 days (hazard ratio [HR]: 7.49, 95% CI: 5.40-10.39), all-cause mortality (HR: 1.91, 95% CI: 1.74-2.10), CVD mortality (HR: 3.53, 95% CI: 2.73-4.57), and new-onset adverse cardiovascular events. External validation confirmed the model's accuracy. Through ECG analyses, our AI DLM can alert clinicians and patients to the possibility of future PMI and related mortality and cardiovascular risks, aiding in timely patient intervention.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.