用于睑板腺评估的人工智能的进步:全面回顾。

IF 5.1 2区 医学 Q1 OPHTHALMOLOGY Survey of ophthalmology Pub Date : 2024-07-23 DOI:10.1016/j.survophthal.2024.07.005
Li Li , Kunhong Xiao , Xianwen Shang , Wenyi Hu , Mayinuer Yusufu , Ruiye Chen , Yujie Wang , Jiahao Liu , Taichen Lai , Linling Guo , Jing Zou , Peter van Wijngaarden , Zongyuan Ge , Mingguang He , Zhuoting Zhu
{"title":"用于睑板腺评估的人工智能的进步:全面回顾。","authors":"Li Li ,&nbsp;Kunhong Xiao ,&nbsp;Xianwen Shang ,&nbsp;Wenyi Hu ,&nbsp;Mayinuer Yusufu ,&nbsp;Ruiye Chen ,&nbsp;Yujie Wang ,&nbsp;Jiahao Liu ,&nbsp;Taichen Lai ,&nbsp;Linling Guo ,&nbsp;Jing Zou ,&nbsp;Peter van Wijngaarden ,&nbsp;Zongyuan Ge ,&nbsp;Mingguang He ,&nbsp;Zhuoting Zhu","doi":"10.1016/j.survophthal.2024.07.005","DOIUrl":null,"url":null,"abstract":"<div><p>Meibomian gland dysfunction<span><span><span> (MGD) is increasingly recognized as a critical contributor to evaporative dry eye<span>, significantly impacting visual quality. With a global prevalence estimated at 35.8 %, it presents substantial challenges for clinicians. Conventional manual evaluation techniques for MGD face limitations characterized by inefficiencies, high subjectivity, limited big data processing capabilities, and a dearth of quantitative analytical tools. With rapidly advancing artificial intelligence (AI) techniques revolutionizing </span></span>ophthalmology<span>, studies are now leveraging sophisticated AI methodologies--including computer vision, unsupervised learning, and supervised learning--to facilitate comprehensive analyses of meibomian gland<span> (MG) evaluations. These evaluations employ various techniques, including slit lamp examination, </span></span></span>infrared imaging<span><span>, confocal microscopy, and </span>optical coherence tomography. This paradigm shift promises enhanced accuracy and consistency in disease evaluation and severity classification. While AI has achieved preliminary strides in meibomian gland evaluation, ongoing advancements in system development and clinical validation are imperative. We review the evolution of MG evaluation, juxtapose AI-driven methods with traditional approaches, elucidate the specific roles of diverse AI technologies, and explore their practical applications using various evaluation techniques. Moreover, we delve into critical considerations for the clinical deployment of AI technologies and envisages future prospects, providing novel insights into MG evaluation and fostering technological and clinical progress in this arena.</span></span></p></div>","PeriodicalId":22102,"journal":{"name":"Survey of ophthalmology","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advances in artificial intelligence for meibomian gland evaluation: A comprehensive review\",\"authors\":\"Li Li ,&nbsp;Kunhong Xiao ,&nbsp;Xianwen Shang ,&nbsp;Wenyi Hu ,&nbsp;Mayinuer Yusufu ,&nbsp;Ruiye Chen ,&nbsp;Yujie Wang ,&nbsp;Jiahao Liu ,&nbsp;Taichen Lai ,&nbsp;Linling Guo ,&nbsp;Jing Zou ,&nbsp;Peter van Wijngaarden ,&nbsp;Zongyuan Ge ,&nbsp;Mingguang He ,&nbsp;Zhuoting Zhu\",\"doi\":\"10.1016/j.survophthal.2024.07.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Meibomian gland dysfunction<span><span><span> (MGD) is increasingly recognized as a critical contributor to evaporative dry eye<span>, significantly impacting visual quality. With a global prevalence estimated at 35.8 %, it presents substantial challenges for clinicians. Conventional manual evaluation techniques for MGD face limitations characterized by inefficiencies, high subjectivity, limited big data processing capabilities, and a dearth of quantitative analytical tools. With rapidly advancing artificial intelligence (AI) techniques revolutionizing </span></span>ophthalmology<span>, studies are now leveraging sophisticated AI methodologies--including computer vision, unsupervised learning, and supervised learning--to facilitate comprehensive analyses of meibomian gland<span> (MG) evaluations. These evaluations employ various techniques, including slit lamp examination, </span></span></span>infrared imaging<span><span>, confocal microscopy, and </span>optical coherence tomography. This paradigm shift promises enhanced accuracy and consistency in disease evaluation and severity classification. While AI has achieved preliminary strides in meibomian gland evaluation, ongoing advancements in system development and clinical validation are imperative. We review the evolution of MG evaluation, juxtapose AI-driven methods with traditional approaches, elucidate the specific roles of diverse AI technologies, and explore their practical applications using various evaluation techniques. Moreover, we delve into critical considerations for the clinical deployment of AI technologies and envisages future prospects, providing novel insights into MG evaluation and fostering technological and clinical progress in this arena.</span></span></p></div>\",\"PeriodicalId\":22102,\"journal\":{\"name\":\"Survey of ophthalmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Survey of ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S003962572400081X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Survey of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003962572400081X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人们日益认识到,睑板腺功能障碍(MGD)是导致干眼症蒸发的重要因素,严重影响视觉质量。据估计,全球发病率为 35.8%,这给临床医生带来了巨大挑战。传统的干眼症人工评估技术面临着效率低、主观性强、大数据处理能力有限以及缺乏定量分析工具等局限性。随着人工智能(AI)技术的飞速发展,眼科领域正在发生革命性的变化,目前的研究正在利用先进的人工智能方法,包括计算机视觉、无监督学习和有监督学习,来促进对睑板腺(MG)评估的全面分析。这些评估采用了各种技术,包括裂隙灯检查、红外成像、共聚焦显微镜、光学相干断层扫描等。这种模式的转变有望提高疾病评估和严重程度分类的准确性和一致性。虽然人工智能在睑板腺评估方面取得了初步进展,但系统开发和临床验证方面的不断进步势在必行。我们回顾了睑板腺评估的发展历程,将人工智能驱动的方法与传统方法并列,阐明了各种人工智能技术的具体作用,并利用各种评估技术探讨了它们的实际应用。此外,我们还深入探讨了人工智能技术临床应用的关键考量因素,并展望了未来前景,从而为MG评估提供了新的见解,并促进了这一领域的技术和临床进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advances in artificial intelligence for meibomian gland evaluation: A comprehensive review

Meibomian gland dysfunction (MGD) is increasingly recognized as a critical contributor to evaporative dry eye, significantly impacting visual quality. With a global prevalence estimated at 35.8 %, it presents substantial challenges for clinicians. Conventional manual evaluation techniques for MGD face limitations characterized by inefficiencies, high subjectivity, limited big data processing capabilities, and a dearth of quantitative analytical tools. With rapidly advancing artificial intelligence (AI) techniques revolutionizing ophthalmology, studies are now leveraging sophisticated AI methodologies--including computer vision, unsupervised learning, and supervised learning--to facilitate comprehensive analyses of meibomian gland (MG) evaluations. These evaluations employ various techniques, including slit lamp examination, infrared imaging, confocal microscopy, and optical coherence tomography. This paradigm shift promises enhanced accuracy and consistency in disease evaluation and severity classification. While AI has achieved preliminary strides in meibomian gland evaluation, ongoing advancements in system development and clinical validation are imperative. We review the evolution of MG evaluation, juxtapose AI-driven methods with traditional approaches, elucidate the specific roles of diverse AI technologies, and explore their practical applications using various evaluation techniques. Moreover, we delve into critical considerations for the clinical deployment of AI technologies and envisages future prospects, providing novel insights into MG evaluation and fostering technological and clinical progress in this arena.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Survey of ophthalmology
Survey of ophthalmology 医学-眼科学
CiteScore
10.30
自引率
2.00%
发文量
138
审稿时长
14.8 weeks
期刊介绍: Survey of Ophthalmology is a clinically oriented review journal designed to keep ophthalmologists up to date. Comprehensive major review articles, written by experts and stringently refereed, integrate the literature on subjects selected for their clinical importance. Survey also includes feature articles, section reviews, book reviews, and abstracts.
期刊最新文献
The Secondary Childhood Glaucomas. Choroidal biomarkers in age-related macular degeneration. Meta-analysis of treatment outcomes for patients with m.11778G>A MT-ND4 Leber hereditary optic neuropathy. Vision degrading myodesopsia from vitreous floaters in the young: An important aspect of myopia. Pediatric keratoconus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1