脑脊液流磁共振成像中单次快速自旋回波序列的临床应用。

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2024-09-01 Epub Date: 2024-07-19 DOI:10.1007/s12194-024-00825-7
Takahito Bessho, Tatsuya Hayashi, Shuhei Shibukawa, Kazuyuki Kourin, Takashi Shouda
{"title":"脑脊液流磁共振成像中单次快速自旋回波序列的临床应用。","authors":"Takahito Bessho, Tatsuya Hayashi, Shuhei Shibukawa, Kazuyuki Kourin, Takashi Shouda","doi":"10.1007/s12194-024-00825-7","DOIUrl":null,"url":null,"abstract":"<p><p>In normal-pressure hydrocephalus, disturbances in cerebrospinal fluid (CSF) circulation occur; therefore, understanding CSF dynamics is crucial. The two-dimensional phase-contrast (2D-PC) method, a common approach for visualizing CSF flow on MRI, often presents challenges owing to prominent vein signals and excessively high contrast, hindering the interpretation of morphological information. Therefore, we devised a new imaging method that utilizes T<sub>2</sub>-weighted high-signal intensification of the CSF and saturation pulses, without requiring specialized imaging sequences. This sequence utilized a T<sub>2</sub>-weighted single-shot fast spin-echo combined with multi-phase imaging synchronized with a pulse wave. Optimal imaging conditions (repetition time, presence/absence of fast recovery, and echo time) were determined using self-made contrast and single-plate phantoms to evaluate signal-to-noise ratio, contrast ratio, and spatial resolution. In certain clinical cases of hydrocephalus, confirming CSF flow using 2D-PC was challenging. However, our method enabled the visualization of CSF flow, proving to be useful in understanding the pathophysiology of hydrocephalus.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clinical application of single-shot fast spin-echo sequence for cerebrospinal fluid flow MR imaging.\",\"authors\":\"Takahito Bessho, Tatsuya Hayashi, Shuhei Shibukawa, Kazuyuki Kourin, Takashi Shouda\",\"doi\":\"10.1007/s12194-024-00825-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In normal-pressure hydrocephalus, disturbances in cerebrospinal fluid (CSF) circulation occur; therefore, understanding CSF dynamics is crucial. The two-dimensional phase-contrast (2D-PC) method, a common approach for visualizing CSF flow on MRI, often presents challenges owing to prominent vein signals and excessively high contrast, hindering the interpretation of morphological information. Therefore, we devised a new imaging method that utilizes T<sub>2</sub>-weighted high-signal intensification of the CSF and saturation pulses, without requiring specialized imaging sequences. This sequence utilized a T<sub>2</sub>-weighted single-shot fast spin-echo combined with multi-phase imaging synchronized with a pulse wave. Optimal imaging conditions (repetition time, presence/absence of fast recovery, and echo time) were determined using self-made contrast and single-plate phantoms to evaluate signal-to-noise ratio, contrast ratio, and spatial resolution. In certain clinical cases of hydrocephalus, confirming CSF flow using 2D-PC was challenging. However, our method enabled the visualization of CSF flow, proving to be useful in understanding the pathophysiology of hydrocephalus.</p>\",\"PeriodicalId\":46252,\"journal\":{\"name\":\"Radiological Physics and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiological Physics and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s12194-024-00825-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00825-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

正常压力脑积水会导致脑脊液(CSF)循环紊乱,因此了解 CSF 动态至关重要。二维相位对比(2D-PC)方法是在磁共振成像上观察 CSF 流动的常用方法,但由于静脉信号突出和对比度过高,这种方法往往会带来挑战,阻碍对形态学信息的解读。因此,我们设计了一种新的成像方法,利用 T2 加权高信号增强 CSF 和饱和脉冲,无需专门的成像序列。该序列利用 T2 加权单次快速自旋回波,结合与脉冲波同步的多相位成像。利用自制的造影剂和单板模型确定了最佳成像条件(重复时间、有/无快速恢复和回波时间),以评估信噪比、对比度和空间分辨率。在某些脑积水临床病例中,使用二维计算机断层成像技术确认 CSF 流具有挑战性。然而,我们的方法使脑脊液流动可视化,证明有助于了解脑积水的病理生理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clinical application of single-shot fast spin-echo sequence for cerebrospinal fluid flow MR imaging.

In normal-pressure hydrocephalus, disturbances in cerebrospinal fluid (CSF) circulation occur; therefore, understanding CSF dynamics is crucial. The two-dimensional phase-contrast (2D-PC) method, a common approach for visualizing CSF flow on MRI, often presents challenges owing to prominent vein signals and excessively high contrast, hindering the interpretation of morphological information. Therefore, we devised a new imaging method that utilizes T2-weighted high-signal intensification of the CSF and saturation pulses, without requiring specialized imaging sequences. This sequence utilized a T2-weighted single-shot fast spin-echo combined with multi-phase imaging synchronized with a pulse wave. Optimal imaging conditions (repetition time, presence/absence of fast recovery, and echo time) were determined using self-made contrast and single-plate phantoms to evaluate signal-to-noise ratio, contrast ratio, and spatial resolution. In certain clinical cases of hydrocephalus, confirming CSF flow using 2D-PC was challenging. However, our method enabled the visualization of CSF flow, proving to be useful in understanding the pathophysiology of hydrocephalus.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Effectiveness of the air-gap method for reducing radiation dose in neonate CT examinations. Optimization of image shoot timing for cerebral veins 3D-digital subtraction angiography by interventional angiography systems. Anomaly detection scheme for lung CT images using vector quantized variational auto-encoder with support vector data description. Deep learning-based approach for acquisition time reduction in ventilation SPECT in patients after lung transplantation. Visualization of X-ray fields, overlaps, and over-beaming on surface of the head in spiral computed tomography using computer-aided design-based X-ray beam modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1