Peripheral dose assessment in radiation therapy using photon beams: experimental results with optically stimulated luminescence dosimeter.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2025-01-25 DOI:10.1007/s12194-025-00883-5
Y Retna Ponmalar, Ravikumar Manickam, Henry Finlay Godson, Kadirampatti Mani Ganesh, Sathiyan Saminathan, Varatharaj Chandraraj, Arun Raman
{"title":"Peripheral dose assessment in radiation therapy using photon beams: experimental results with optically stimulated luminescence dosimeter.","authors":"Y Retna Ponmalar, Ravikumar Manickam, Henry Finlay Godson, Kadirampatti Mani Ganesh, Sathiyan Saminathan, Varatharaj Chandraraj, Arun Raman","doi":"10.1007/s12194-025-00883-5","DOIUrl":null,"url":null,"abstract":"<p><p>The estimation of peripheral dose (PD) is vital in cancer patients with long life expectancy. Assessment of PD to radiosensitive organs is important to determine the possible risk of late effects. An attempt has been made to assess the peripheral dose using optically stimulated luminescence dosimeter (OSLD) with megavoltage photon beams as a function of field size, depth, energy, and distance from the field edge. The PD measurements were carried out at 13 locations starting from 1.5 cm to 20.8 cm from radiation field edge for three different field sizes at three different depths with 6 and 18 MV photon beams. In addition, the measurements were carried out to analyze the response in PD due to the presence of wedge. The %PD decreases gradually with an increase in distance from the radiation field edge. The %PD at surface for 10 × 10cm<sup>2</sup> with 6MV photon beams was 6.77 ± 0.32% and 1.0 ± 0.04% at 1.5 cm and 20.8 cm away from field edge. For 20 × 20 cm<sup>2</sup> field, %PD was found to be much higher at surface than at 5 cm depth for all distances from field edge. This study demonstrates the suitability of OSLD for PD assessment in megavoltage photon beams. The PD increases as field size increases, primarily due to greater amount of out-of-field scatter generated by larger surface area of the collimator defining the larger field size. An enhancement in PD was observed with wedge when the thick end was oriented towards the OSLDs. This study assessed PD that would be a risk factor of the normal tissue complication and secondary cancer induction.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-025-00883-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of peripheral dose (PD) is vital in cancer patients with long life expectancy. Assessment of PD to radiosensitive organs is important to determine the possible risk of late effects. An attempt has been made to assess the peripheral dose using optically stimulated luminescence dosimeter (OSLD) with megavoltage photon beams as a function of field size, depth, energy, and distance from the field edge. The PD measurements were carried out at 13 locations starting from 1.5 cm to 20.8 cm from radiation field edge for three different field sizes at three different depths with 6 and 18 MV photon beams. In addition, the measurements were carried out to analyze the response in PD due to the presence of wedge. The %PD decreases gradually with an increase in distance from the radiation field edge. The %PD at surface for 10 × 10cm2 with 6MV photon beams was 6.77 ± 0.32% and 1.0 ± 0.04% at 1.5 cm and 20.8 cm away from field edge. For 20 × 20 cm2 field, %PD was found to be much higher at surface than at 5 cm depth for all distances from field edge. This study demonstrates the suitability of OSLD for PD assessment in megavoltage photon beams. The PD increases as field size increases, primarily due to greater amount of out-of-field scatter generated by larger surface area of the collimator defining the larger field size. An enhancement in PD was observed with wedge when the thick end was oriented towards the OSLDs. This study assessed PD that would be a risk factor of the normal tissue complication and secondary cancer induction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Selection of Radiological Physics and Technology Awards 2024. Age-related sensitivity deterioration evaluation of positron emission tomography utilizing cross-calibration factor measurement data. Peripheral dose assessment in radiation therapy using photon beams: experimental results with optically stimulated luminescence dosimeter. Influence of obtaining medical records and laboratory data on the sensitivity of diagnostic imaging assessment by radiological technologists. Dosimetric impact of arc simulation angular resolution in single-isocentre multi-target stereotactic radiosurgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1