Ian S. Metcalfe, Greg A. Mutch, Evangelos I. Papaioannou, Sotiria Tsochataridou, Dragos Neagu, Dan J. L. Brett, Francesco Iacoviello, Thomas S. Miller, Paul R. Shearing, Patricia A. Hunt
{"title":"利用湿度驱动的熔融碳酸盐膜从空气中分离和浓缩二氧化碳","authors":"Ian S. Metcalfe, Greg A. Mutch, Evangelos I. Papaioannou, Sotiria Tsochataridou, Dragos Neagu, Dan J. L. Brett, Francesco Iacoviello, Thomas S. Miller, Paul R. Shearing, Patricia A. Hunt","doi":"10.1038/s41560-024-01588-6","DOIUrl":null,"url":null,"abstract":"Separation processes are substantially more difficult when the species to be separated is highly dilute. To perform any dilute separation, thermodynamic and kinetic limitations must be overcome. Here we report a molten-carbonate membrane that can ‘pump’ CO2 from a 400 ppm input stream (representative of air) to an output stream with a higher concentration of CO2, by exploiting ambient energy in the form of a humidity difference. The substantial H2O concentration difference across the membrane drives CO2 permeation ‘uphill’ against its own concentration difference, analogous to active transport in biological membranes. The introduction of this H2O concentration difference also results in a kinetic enhancement that boosts the CO2 flux by an order of magnitude even as the CO2 input stream concentration is decreased by three orders of magnitude from 50% to 400 ppm. Computational modelling shows that this enhancement is due to the H2O-mediated formation of carriers within the molten salt that facilitate rapid CO2 transport. Capture of CO2 from the air requires substantial amounts of energy. Here the authors report molten-carbonate membranes to concentrate CO2 from 400 ppm input streams that exploit ambient energy in the form of humidity differences.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 9","pages":"1074-1083"},"PeriodicalIF":49.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41560-024-01588-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Separation and concentration of CO2 from air using a humidity-driven molten-carbonate membrane\",\"authors\":\"Ian S. Metcalfe, Greg A. Mutch, Evangelos I. Papaioannou, Sotiria Tsochataridou, Dragos Neagu, Dan J. L. Brett, Francesco Iacoviello, Thomas S. Miller, Paul R. Shearing, Patricia A. Hunt\",\"doi\":\"10.1038/s41560-024-01588-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separation processes are substantially more difficult when the species to be separated is highly dilute. To perform any dilute separation, thermodynamic and kinetic limitations must be overcome. Here we report a molten-carbonate membrane that can ‘pump’ CO2 from a 400 ppm input stream (representative of air) to an output stream with a higher concentration of CO2, by exploiting ambient energy in the form of a humidity difference. The substantial H2O concentration difference across the membrane drives CO2 permeation ‘uphill’ against its own concentration difference, analogous to active transport in biological membranes. The introduction of this H2O concentration difference also results in a kinetic enhancement that boosts the CO2 flux by an order of magnitude even as the CO2 input stream concentration is decreased by three orders of magnitude from 50% to 400 ppm. Computational modelling shows that this enhancement is due to the H2O-mediated formation of carriers within the molten salt that facilitate rapid CO2 transport. Capture of CO2 from the air requires substantial amounts of energy. Here the authors report molten-carbonate membranes to concentrate CO2 from 400 ppm input streams that exploit ambient energy in the form of humidity differences.\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"9 9\",\"pages\":\"1074-1083\"},\"PeriodicalIF\":49.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41560-024-01588-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41560-024-01588-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01588-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Separation and concentration of CO2 from air using a humidity-driven molten-carbonate membrane
Separation processes are substantially more difficult when the species to be separated is highly dilute. To perform any dilute separation, thermodynamic and kinetic limitations must be overcome. Here we report a molten-carbonate membrane that can ‘pump’ CO2 from a 400 ppm input stream (representative of air) to an output stream with a higher concentration of CO2, by exploiting ambient energy in the form of a humidity difference. The substantial H2O concentration difference across the membrane drives CO2 permeation ‘uphill’ against its own concentration difference, analogous to active transport in biological membranes. The introduction of this H2O concentration difference also results in a kinetic enhancement that boosts the CO2 flux by an order of magnitude even as the CO2 input stream concentration is decreased by three orders of magnitude from 50% to 400 ppm. Computational modelling shows that this enhancement is due to the H2O-mediated formation of carriers within the molten salt that facilitate rapid CO2 transport. Capture of CO2 from the air requires substantial amounts of energy. Here the authors report molten-carbonate membranes to concentrate CO2 from 400 ppm input streams that exploit ambient energy in the form of humidity differences.
Nature EnergyEnergy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍:
Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies.
With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector.
Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence.
In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.