基于代谢的除虫菊酯抗性机制的全基因组探索

IF 4.3 1区 农林科学 Q1 ENTOMOLOGY Journal of Pest Science Pub Date : 2024-07-19 DOI:10.1007/s10340-024-01797-8
Juil Kim, Md-Mafizur Rahman, Changhee Han, Jungwon Jeon, Min Kwon, Si Hyeock Lee, Celso Omoto
{"title":"基于代谢的除虫菊酯抗性机制的全基因组探索","authors":"Juil Kim, Md-Mafizur Rahman, Changhee Han, Jungwon Jeon, Min Kwon, Si Hyeock Lee, Celso Omoto","doi":"10.1007/s10340-024-01797-8","DOIUrl":null,"url":null,"abstract":"<p>To elucidate the deltamethrin resistance mechanism in <i>Helicoverpa armigera</i>, we explored mutations at the deltamethrin target site, genomic level variations between insecticide-susceptible and -resistant strains, and differences in gene expression patterns between the strains. Known pyrethroid resistance-associated point mutations within the voltage-gated sodium channel were undetected in the cDNA and gDNA of resistant strains or field populations. The whole-genome de novo assembly of a Korean-resistant strain was performed (GCA_026262555.1), and 13 genomes of susceptible and resistant individuals were re-sequenced using field populations. Approximately 3,369,837 variants (SNPs and indels) were compared with our reference <i>H. armigera</i> genome, and 1,032,689 variants were identified from open reading frames. A resistance-specific CYP3 subfamily gene with five variants (CYP321A1v1–v5) was identified in the resistant strains, indicating the potential role of these variants in resistance. RNA-seq analysis identified 36,720 transcripts from 45 Illumina RNA-seq datasets of the fatbody, gut, and the rest of the body. Differential gene expression analysis revealed some differently overexpressed detoxification enzyme genes in the resistant strains, particularly cytochrome P450 genes. This finding was consistent with the results of bioassay tests using PBO-based synergists that inhibit enzymes belong to cytochrome P450 family, further supporting the role of detoxification enzymes in resistance. Therefore, <i>H. armigera</i> may acquire deltamethrin resistance through a combination of actions, including the overexpression of various detoxification enzymes, such as CYP321A5 identified in this study may serve as a basis for understanding insecticide resistance at the molecular level and can be applied as diagnostic markers for resistance.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"31 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide exploration of metabolic-based pyrethroid resistance mechanism in Helicoverpa armigera\",\"authors\":\"Juil Kim, Md-Mafizur Rahman, Changhee Han, Jungwon Jeon, Min Kwon, Si Hyeock Lee, Celso Omoto\",\"doi\":\"10.1007/s10340-024-01797-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To elucidate the deltamethrin resistance mechanism in <i>Helicoverpa armigera</i>, we explored mutations at the deltamethrin target site, genomic level variations between insecticide-susceptible and -resistant strains, and differences in gene expression patterns between the strains. Known pyrethroid resistance-associated point mutations within the voltage-gated sodium channel were undetected in the cDNA and gDNA of resistant strains or field populations. The whole-genome de novo assembly of a Korean-resistant strain was performed (GCA_026262555.1), and 13 genomes of susceptible and resistant individuals were re-sequenced using field populations. Approximately 3,369,837 variants (SNPs and indels) were compared with our reference <i>H. armigera</i> genome, and 1,032,689 variants were identified from open reading frames. A resistance-specific CYP3 subfamily gene with five variants (CYP321A1v1–v5) was identified in the resistant strains, indicating the potential role of these variants in resistance. RNA-seq analysis identified 36,720 transcripts from 45 Illumina RNA-seq datasets of the fatbody, gut, and the rest of the body. Differential gene expression analysis revealed some differently overexpressed detoxification enzyme genes in the resistant strains, particularly cytochrome P450 genes. This finding was consistent with the results of bioassay tests using PBO-based synergists that inhibit enzymes belong to cytochrome P450 family, further supporting the role of detoxification enzymes in resistance. Therefore, <i>H. armigera</i> may acquire deltamethrin resistance through a combination of actions, including the overexpression of various detoxification enzymes, such as CYP321A5 identified in this study may serve as a basis for understanding insecticide resistance at the molecular level and can be applied as diagnostic markers for resistance.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01797-8\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01797-8","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了阐明Helicoverpa armigera对溴氰菊酯的抗性机制,我们研究了溴氰菊酯靶点的突变、杀虫剂易感株系和抗性株系之间基因组水平的变化以及株系之间基因表达模式的差异。在抗性菌株或田间种群的 cDNA 和 gDNA 中,未发现电压门控钠通道中已知的除虫菊酯抗性相关点突变。对一株韩国抗性菌株(GCA_026262555.1)进行了全基因组从头组装,并利用野外群体对 13 个易感个体和抗性个体的基因组进行了重新测序。将大约 3,369,837 个变异(SNPs 和 indels)与我们的 H. armigera 参考基因组进行了比较,并从开放阅读框中鉴定出 1,032,689 个变异。在抗性菌株中发现了一个抗性特异的 CYP3 亚家族基因,其中有五个变体(CYP321A1v1-v5),表明这些变体在抗性中的潜在作用。RNA-seq分析从脂肪体、肠道和身体其他部位的45个Illumina RNA-seq数据集中鉴定出36 720个转录本。差异基因表达分析表明,在抗性菌株中,一些解毒酶基因,特别是细胞色素 P450 基因的表达量不同。这一发现与使用抑制细胞色素 P450 家族酶的 PBO 类增效剂进行生物测定的结果一致,进一步证实了解毒酶在抗性中的作用。因此,H. armigera可能通过多种作用获得溴氰菊酯抗性,包括多种解毒酶的过度表达,如本研究中发现的CYP321A5可作为从分子水平了解杀虫剂抗性的基础,并可作为抗性诊断标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-wide exploration of metabolic-based pyrethroid resistance mechanism in Helicoverpa armigera

To elucidate the deltamethrin resistance mechanism in Helicoverpa armigera, we explored mutations at the deltamethrin target site, genomic level variations between insecticide-susceptible and -resistant strains, and differences in gene expression patterns between the strains. Known pyrethroid resistance-associated point mutations within the voltage-gated sodium channel were undetected in the cDNA and gDNA of resistant strains or field populations. The whole-genome de novo assembly of a Korean-resistant strain was performed (GCA_026262555.1), and 13 genomes of susceptible and resistant individuals were re-sequenced using field populations. Approximately 3,369,837 variants (SNPs and indels) were compared with our reference H. armigera genome, and 1,032,689 variants were identified from open reading frames. A resistance-specific CYP3 subfamily gene with five variants (CYP321A1v1–v5) was identified in the resistant strains, indicating the potential role of these variants in resistance. RNA-seq analysis identified 36,720 transcripts from 45 Illumina RNA-seq datasets of the fatbody, gut, and the rest of the body. Differential gene expression analysis revealed some differently overexpressed detoxification enzyme genes in the resistant strains, particularly cytochrome P450 genes. This finding was consistent with the results of bioassay tests using PBO-based synergists that inhibit enzymes belong to cytochrome P450 family, further supporting the role of detoxification enzymes in resistance. Therefore, H. armigera may acquire deltamethrin resistance through a combination of actions, including the overexpression of various detoxification enzymes, such as CYP321A5 identified in this study may serve as a basis for understanding insecticide resistance at the molecular level and can be applied as diagnostic markers for resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
期刊最新文献
Assessment of drive efficiency and resistance allele formation of a homing gene drive in the mosquito Aedes aegypti Exclusion of ants conditions the efficiency of an attract and reward strategy against Dysaphis plantaginea in apple orchards From a stored-product pest to a promising protein source: a U-turn of human perspective for the yellow mealworm Tenebrio molitor Biological control of pests of stored cereals with the predatory mites Blattisocius tarsalis and Cheyletus malaccensis Cover crop providing windborne pollen enhances the efficacy of biocontrol of multiple pests by Euseius sojaensis in citrus orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1