Eszter Borsos, Elisabeth Varga, Georg Aichinger, Doris Marko
{"title":"揭示Alternariol和Alternariol单甲醚肝脏I期代谢的种间差异:缩小数据差距,进行全面风险评估。","authors":"Eszter Borsos, Elisabeth Varga, Georg Aichinger, Doris Marko","doi":"10.1021/acs.chemrestox.4c00095","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Alternaria</i> mycotoxins alternariol (AOH) and alternariol 9-<i>O</i>-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 μM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1356-1363"},"PeriodicalIF":3.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling Interspecies Differences in the Phase I Hepatic Metabolism of Alternariol and Alternariol Monomethyl Ether: Closing Data Gaps for a Comprehensive Risk Assessment.\",\"authors\":\"Eszter Borsos, Elisabeth Varga, Georg Aichinger, Doris Marko\",\"doi\":\"10.1021/acs.chemrestox.4c00095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Alternaria</i> mycotoxins alternariol (AOH) and alternariol 9-<i>O</i>-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 μM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.</p>\",\"PeriodicalId\":31,\"journal\":{\"name\":\"Chemical Research in Toxicology\",\"volume\":\" \",\"pages\":\"1356-1363\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Research in Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrestox.4c00095\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00095","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Unraveling Interspecies Differences in the Phase I Hepatic Metabolism of Alternariol and Alternariol Monomethyl Ether: Closing Data Gaps for a Comprehensive Risk Assessment.
The Alternaria mycotoxins alternariol (AOH) and alternariol 9-O-monomethyl ether (AME) are pervasive food contaminants known to exert adverse effects in vitro, yet their toxicokinetics remain inadequately understood. Thus, this study endeavors to elucidate the qualitative and quantitative aspects of the phase I metabolism of AOH and AME. To pursue this goal, reduced nicotinamide adenine dinucleotide phosphate (NADPH)-fortified porcine, rat, and human liver microsomes were incubated for 0-10 min with AOH or AME within a concentration range of 1-100 and 1-50 μM, respectively. The decline in the parent toxin concentration was monitored via liquid chromatography coupled to tandem mass spectrometry, whereas coupling to high-resolution mass spectrometry provided insights into the composition of the arising metabolic mixture. The collected quantitative data allowed us to calculate the hepatic intrinsic clearance rates of AOH and AME, marking a notable contribution to the field. Moreover, we unveiled interspecies differences in the pattern and rate of the phase I metabolism of the investigated mycotoxins. The presented findings lay the groundwork for physiologically based toxicokinetic modeling aimed at estimating local concentrations of these mycotoxins in specific organs, enhancing our understanding of their mode of action and adverse health effects.
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.