{"title":"硝基脂肪酸:关于健康和疾病中的分析方法和水平的全面综述。","authors":"Yasmin Elshoura , Magy Herz , Mohamed Z. Gad , Rasha Hanafi","doi":"10.1016/j.ab.2024.115624","DOIUrl":null,"url":null,"abstract":"<div><p>Nitro fatty acids (NO<sub>2</sub>–FAs) are biologically active compounds produced from the reaction of unsaturated fatty acids with reactive nitrogen species (RNS). Due to their electrophilic nature, these endogenously produced metabolites can react with nucleophilic targets, producing a spectrum of modulatory and protective effects. Determination of NO<sub>2</sub>–FAs in biological samples is challenging due to their low nanomolar to picomolar endogenous concentrations, indistinct metabolism, and distribution in many tissues and biofluids. Several attempts have been made to develop precise, standardized, and efficient methodologies for assessing physiological and pathophysiological processes to overcome the difficulties associated with their measurement. This review discusses those approaches utilizing liquid chromatography tandem mass spectrometry (LC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS) for the quantification of NO<sub>2</sub>–FAs, in addition to a summary of their laboratory synthesis and extraction from biological samples. Clinical associations with different pathological conditions, including hyperlipidaemia, cardiac ischemia and herpes simplex type 2 viral infection (HSV-2), are also discussed.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitro fatty acids: A comprehensive review on analytical methods and levels in health and disease\",\"authors\":\"Yasmin Elshoura , Magy Herz , Mohamed Z. Gad , Rasha Hanafi\",\"doi\":\"10.1016/j.ab.2024.115624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nitro fatty acids (NO<sub>2</sub>–FAs) are biologically active compounds produced from the reaction of unsaturated fatty acids with reactive nitrogen species (RNS). Due to their electrophilic nature, these endogenously produced metabolites can react with nucleophilic targets, producing a spectrum of modulatory and protective effects. Determination of NO<sub>2</sub>–FAs in biological samples is challenging due to their low nanomolar to picomolar endogenous concentrations, indistinct metabolism, and distribution in many tissues and biofluids. Several attempts have been made to develop precise, standardized, and efficient methodologies for assessing physiological and pathophysiological processes to overcome the difficulties associated with their measurement. This review discusses those approaches utilizing liquid chromatography tandem mass spectrometry (LC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS) for the quantification of NO<sub>2</sub>–FAs, in addition to a summary of their laboratory synthesis and extraction from biological samples. Clinical associations with different pathological conditions, including hyperlipidaemia, cardiac ischemia and herpes simplex type 2 viral infection (HSV-2), are also discussed.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003269724001684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724001684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Nitro fatty acids: A comprehensive review on analytical methods and levels in health and disease
Nitro fatty acids (NO2–FAs) are biologically active compounds produced from the reaction of unsaturated fatty acids with reactive nitrogen species (RNS). Due to their electrophilic nature, these endogenously produced metabolites can react with nucleophilic targets, producing a spectrum of modulatory and protective effects. Determination of NO2–FAs in biological samples is challenging due to their low nanomolar to picomolar endogenous concentrations, indistinct metabolism, and distribution in many tissues and biofluids. Several attempts have been made to develop precise, standardized, and efficient methodologies for assessing physiological and pathophysiological processes to overcome the difficulties associated with their measurement. This review discusses those approaches utilizing liquid chromatography tandem mass spectrometry (LC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS) for the quantification of NO2–FAs, in addition to a summary of their laboratory synthesis and extraction from biological samples. Clinical associations with different pathological conditions, including hyperlipidaemia, cardiac ischemia and herpes simplex type 2 viral infection (HSV-2), are also discussed.