Sahar Hassanzadeh Mostafaei , Jafar Tanha , Amir Sharafkhaneh
{"title":"基于变换器和跨模态注意力的新型深度学习模型,用于睡眠阶段分类。","authors":"Sahar Hassanzadeh Mostafaei , Jafar Tanha , Amir Sharafkhaneh","doi":"10.1016/j.jbi.2024.104689","DOIUrl":null,"url":null,"abstract":"<div><p>The classification of sleep stages is crucial for gaining insights into an individual’s sleep patterns and identifying potential health issues. Employing several important physiological channels in different views, each providing a distinct perspective on sleep patterns, can have a great impact on the efficiency of the classification models. In the context of neural networks and deep learning models, transformers are very effective, especially when dealing with time series data, and have shown remarkable compatibility with sequential data analysis as physiological channels. On the other hand, cross-modality attention by integrating information from multiple views of the data enables to capture relationships among different modalities, allowing models to selectively focus on relevant information from each modality. In this paper, we introduce a novel deep-learning model based on transformer encoder-decoder and cross-modal attention for sleep stage classification. The proposed model processes information from various physiological channels with different modalities using the Sleep Heart Health Study Dataset (SHHS) data and leverages transformer encoders for feature extraction and cross-modal attention for effective integration to feed into the transformer decoder. The combination of these elements increased the accuracy of the model up to 91.33% in classifying five classes of sleep stages. Empirical evaluations demonstrated the model’s superior performance compared to standalone approaches and other state-of-the-art techniques, showcasing the potential of combining transformer and cross-modal attention for improved sleep stage classification.</p></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"157 ","pages":"Article 104689"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel deep learning model based on transformer and cross modality attention for classification of sleep stages\",\"authors\":\"Sahar Hassanzadeh Mostafaei , Jafar Tanha , Amir Sharafkhaneh\",\"doi\":\"10.1016/j.jbi.2024.104689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The classification of sleep stages is crucial for gaining insights into an individual’s sleep patterns and identifying potential health issues. Employing several important physiological channels in different views, each providing a distinct perspective on sleep patterns, can have a great impact on the efficiency of the classification models. In the context of neural networks and deep learning models, transformers are very effective, especially when dealing with time series data, and have shown remarkable compatibility with sequential data analysis as physiological channels. On the other hand, cross-modality attention by integrating information from multiple views of the data enables to capture relationships among different modalities, allowing models to selectively focus on relevant information from each modality. In this paper, we introduce a novel deep-learning model based on transformer encoder-decoder and cross-modal attention for sleep stage classification. The proposed model processes information from various physiological channels with different modalities using the Sleep Heart Health Study Dataset (SHHS) data and leverages transformer encoders for feature extraction and cross-modal attention for effective integration to feed into the transformer decoder. The combination of these elements increased the accuracy of the model up to 91.33% in classifying five classes of sleep stages. Empirical evaluations demonstrated the model’s superior performance compared to standalone approaches and other state-of-the-art techniques, showcasing the potential of combining transformer and cross-modal attention for improved sleep stage classification.</p></div>\",\"PeriodicalId\":15263,\"journal\":{\"name\":\"Journal of Biomedical Informatics\",\"volume\":\"157 \",\"pages\":\"Article 104689\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Informatics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532046424001072\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046424001072","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A novel deep learning model based on transformer and cross modality attention for classification of sleep stages
The classification of sleep stages is crucial for gaining insights into an individual’s sleep patterns and identifying potential health issues. Employing several important physiological channels in different views, each providing a distinct perspective on sleep patterns, can have a great impact on the efficiency of the classification models. In the context of neural networks and deep learning models, transformers are very effective, especially when dealing with time series data, and have shown remarkable compatibility with sequential data analysis as physiological channels. On the other hand, cross-modality attention by integrating information from multiple views of the data enables to capture relationships among different modalities, allowing models to selectively focus on relevant information from each modality. In this paper, we introduce a novel deep-learning model based on transformer encoder-decoder and cross-modal attention for sleep stage classification. The proposed model processes information from various physiological channels with different modalities using the Sleep Heart Health Study Dataset (SHHS) data and leverages transformer encoders for feature extraction and cross-modal attention for effective integration to feed into the transformer decoder. The combination of these elements increased the accuracy of the model up to 91.33% in classifying five classes of sleep stages. Empirical evaluations demonstrated the model’s superior performance compared to standalone approaches and other state-of-the-art techniques, showcasing the potential of combining transformer and cross-modal attention for improved sleep stage classification.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.