Kristin J Fritsch, Laura Krüger, Stefan Handtke, Thomas P Kohler, Arina Ozhiganova, Kristin Jahn, Jan Wesche, Andreas Greinacher, Sven Hammerschmidt
{"title":"肺炎球菌神经氨酸酶可增加肺炎溶素对血小板的杀伤力。","authors":"Kristin J Fritsch, Laura Krüger, Stefan Handtke, Thomas P Kohler, Arina Ozhiganova, Kristin Jahn, Jan Wesche, Andreas Greinacher, Sven Hammerschmidt","doi":"10.1055/a-2369-8680","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> Platelets prevent extravasation of capillary fluids into the pulmonary interstitial tissue by sealing gaps in inflamed endothelium. This reduces respiratory distress associated with pneumonia. <i>Streptococcus pneumoniae</i> is the leading cause of severe community-acquired pneumonia. Pneumococci produce pneumolysin (PLY), which forms pores in membranes of eukaryotic cells including platelets. Additionally, pneumococci express neuraminidases, which cleave sialic acid residues from eukaryotic glycoproteins. In this study, we investigated the effect of desialylation on PLY binding and pore formation on platelets.</p><p><strong>Materials and methods: </strong> We incubated human platelets with purified neuraminidases and PLY, or nonencapsulated <i>S. pneumoniae</i> D39/TIGR4 and isogenic mutants deficient in PLY and/or NanA. We assessed platelet desialylation, PLY binding, and pore formation by flow cytometry. We also analyzed the inhibitory potential of therapeutic immunoglobulin G preparations (IVIG [intravenous immunoglobulin]).</p><p><strong>Results: </strong> Wild-type pneumococci cause desialylation of platelet glycoproteins by neuraminidases, which is reduced by 90 to 100% in NanA-deficient mutants. NanC, cleaving only α2,3-linked sialic acid, induced platelet desialylation. PLY binding to platelets then x2doubled (<i>p</i> = 0.0166) and pore formation tripled (<i>p</i> = 0.0373). A neuraminidase cleaving α2,3-, α2,6-, and α2,8-linked sialic acid like NanA was even more efficient. Addition of polyvalent IVIG (5 mg/mL) decreased platelet desialylation induced by NanC up to 90% (<i>p</i> = 0.263) and reduced pore formation >95% (<i>p</i> < 0.0001) when incubated with pneumococci.</p><p><strong>Conclusion: </strong> Neuraminidases are key virulence factors of pneumococci and desialylate platelet glycoproteins, thereby unmasking PLY-binding sites. This enhances binding of PLY and pore formation showing that pneumococcal neuraminidases and PLY act in concert to kill platelets. However, human polyvalent immunoglobulin G preparations are promising agents for therapeutic intervention during severe pneumococcal pneumonia.</p>","PeriodicalId":23036,"journal":{"name":"Thrombosis and haemostasis","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pneumococcal Neuraminidases Increase Platelet Killing by Pneumolysin.\",\"authors\":\"Kristin J Fritsch, Laura Krüger, Stefan Handtke, Thomas P Kohler, Arina Ozhiganova, Kristin Jahn, Jan Wesche, Andreas Greinacher, Sven Hammerschmidt\",\"doi\":\"10.1055/a-2369-8680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong> Platelets prevent extravasation of capillary fluids into the pulmonary interstitial tissue by sealing gaps in inflamed endothelium. This reduces respiratory distress associated with pneumonia. <i>Streptococcus pneumoniae</i> is the leading cause of severe community-acquired pneumonia. Pneumococci produce pneumolysin (PLY), which forms pores in membranes of eukaryotic cells including platelets. Additionally, pneumococci express neuraminidases, which cleave sialic acid residues from eukaryotic glycoproteins. In this study, we investigated the effect of desialylation on PLY binding and pore formation on platelets.</p><p><strong>Materials and methods: </strong> We incubated human platelets with purified neuraminidases and PLY, or nonencapsulated <i>S. pneumoniae</i> D39/TIGR4 and isogenic mutants deficient in PLY and/or NanA. We assessed platelet desialylation, PLY binding, and pore formation by flow cytometry. We also analyzed the inhibitory potential of therapeutic immunoglobulin G preparations (IVIG [intravenous immunoglobulin]).</p><p><strong>Results: </strong> Wild-type pneumococci cause desialylation of platelet glycoproteins by neuraminidases, which is reduced by 90 to 100% in NanA-deficient mutants. NanC, cleaving only α2,3-linked sialic acid, induced platelet desialylation. PLY binding to platelets then x2doubled (<i>p</i> = 0.0166) and pore formation tripled (<i>p</i> = 0.0373). A neuraminidase cleaving α2,3-, α2,6-, and α2,8-linked sialic acid like NanA was even more efficient. Addition of polyvalent IVIG (5 mg/mL) decreased platelet desialylation induced by NanC up to 90% (<i>p</i> = 0.263) and reduced pore formation >95% (<i>p</i> < 0.0001) when incubated with pneumococci.</p><p><strong>Conclusion: </strong> Neuraminidases are key virulence factors of pneumococci and desialylate platelet glycoproteins, thereby unmasking PLY-binding sites. This enhances binding of PLY and pore formation showing that pneumococcal neuraminidases and PLY act in concert to kill platelets. However, human polyvalent immunoglobulin G preparations are promising agents for therapeutic intervention during severe pneumococcal pneumonia.</p>\",\"PeriodicalId\":23036,\"journal\":{\"name\":\"Thrombosis and haemostasis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thrombosis and haemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2369-8680\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thrombosis and haemostasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2369-8680","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Pneumococcal Neuraminidases Increase Platelet Killing by Pneumolysin.
Background: Platelets prevent extravasation of capillary fluids into the pulmonary interstitial tissue by sealing gaps in inflamed endothelium. This reduces respiratory distress associated with pneumonia. Streptococcus pneumoniae is the leading cause of severe community-acquired pneumonia. Pneumococci produce pneumolysin (PLY), which forms pores in membranes of eukaryotic cells including platelets. Additionally, pneumococci express neuraminidases, which cleave sialic acid residues from eukaryotic glycoproteins. In this study, we investigated the effect of desialylation on PLY binding and pore formation on platelets.
Materials and methods: We incubated human platelets with purified neuraminidases and PLY, or nonencapsulated S. pneumoniae D39/TIGR4 and isogenic mutants deficient in PLY and/or NanA. We assessed platelet desialylation, PLY binding, and pore formation by flow cytometry. We also analyzed the inhibitory potential of therapeutic immunoglobulin G preparations (IVIG [intravenous immunoglobulin]).
Results: Wild-type pneumococci cause desialylation of platelet glycoproteins by neuraminidases, which is reduced by 90 to 100% in NanA-deficient mutants. NanC, cleaving only α2,3-linked sialic acid, induced platelet desialylation. PLY binding to platelets then x2doubled (p = 0.0166) and pore formation tripled (p = 0.0373). A neuraminidase cleaving α2,3-, α2,6-, and α2,8-linked sialic acid like NanA was even more efficient. Addition of polyvalent IVIG (5 mg/mL) decreased platelet desialylation induced by NanC up to 90% (p = 0.263) and reduced pore formation >95% (p < 0.0001) when incubated with pneumococci.
Conclusion: Neuraminidases are key virulence factors of pneumococci and desialylate platelet glycoproteins, thereby unmasking PLY-binding sites. This enhances binding of PLY and pore formation showing that pneumococcal neuraminidases and PLY act in concert to kill platelets. However, human polyvalent immunoglobulin G preparations are promising agents for therapeutic intervention during severe pneumococcal pneumonia.
期刊介绍:
Thrombosis and Haemostasis publishes reports on basic, translational and clinical research dedicated to novel results and highest quality in any area of thrombosis and haemostasis, vascular biology and medicine, inflammation and infection, platelet and leukocyte biology, from genetic, molecular & cellular studies, diagnostic, therapeutic & preventative studies to high-level translational and clinical research. The journal provides position and guideline papers, state-of-the-art papers, expert analysis and commentaries, and dedicated theme issues covering recent developments and key topics in the field.