{"title":"德国北莱茵-威斯特法伦州农业景观的生态效益","authors":"Stefan Seifert , Saskia Wolff , Silke Hüttel","doi":"10.1016/j.agsy.2024.104062","DOIUrl":null,"url":null,"abstract":"<div><h3>CONTEXT</h3><p>Intensified agricultural production systems relying on larger field sizes and homogeneous landscapes result in land degradation, biodiversity losses, and impaired ecosystem services, particularly regulating services such as water and climate regulation. A multifunctional landscape composition and configuration promises higher ecosystem functionality by balancing ecological and economic provisioning functionality for food, fuel, and fiber. However, to the best of our knowledge, not much is known about the synergies and trade-offs of different landscape compositions and configurations and landscape designs providing ecosystem functionality in economic and ecological dimensions.</p></div><div><h3>OBJECTIVE</h3><p>We addressed the question whether the ecosystem functionality of agricultural landscapes can be improved at given levels of economic valuation. We quantified potential improvements of ecosystem functionality through multifunctional landscape composition and configuration. We identified agricultural landscapes that provide high ecosystem functionality at their level of economic valuation, given that such regions may serve as role models for a target landscape composition.</p></div><div><h3>METHODS</h3><p>Using an eco-efficiency approach based on the non-parametric order<em>-m</em> estimator, we quantified potential improvements of ecosystem functionality at the agricultural landscapes scale. We used the 20 km<sup>2</sup> hexagonal grid level in the Federal State of North Rhine-Westphalia, Germany. We described landscape composition and configuration using spatially explicit land cover data from the Integrated Administration and Control System (IACS); land value data indicated the economic output of the landscape. We investigated robustness of our results under different grid specifications (10–50 km<sup>2</sup>) and using subsamples of regions with similar environmental conditions.</p></div><div><h3>RESULTS AND CONCLUSIONS</h3><p>We found on average high eco-efficiency of agricultural landscapes in the study region. We also found notable improvement potentials in at least one ecological indicator that were spatially clustered. The results suggest the potential for Pareto improvements, i.e., increasing landscape eco-efficiency without sacrificing economic outputs.</p></div><div><h3>SIGNIFICANCE</h3><p>We present a novel empirical approach to evaluate the eco-efficiency of agricultural landscapes and investigate spatial patterns of eco-efficiency at the landscape scale. We modeled landscapes' potential multifunctionality at a fine regional scale using indicators for landscape composition and configuration based on spatially explicit and highly granular land use and land management data. We relied on publicly available data, and our approach can serve to develop monitoring or policy evaluation at the landscape scale.</p></div>","PeriodicalId":7730,"journal":{"name":"Agricultural Systems","volume":"220 ","pages":"Article 104062"},"PeriodicalIF":6.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0308521X24002129/pdfft?md5=c2c4557572656a5ff7599d68ca62cbe9&pid=1-s2.0-S0308521X24002129-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Eco-efficiency in the agricultural landscape of North Rhine-Westphalia, Germany\",\"authors\":\"Stefan Seifert , Saskia Wolff , Silke Hüttel\",\"doi\":\"10.1016/j.agsy.2024.104062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>CONTEXT</h3><p>Intensified agricultural production systems relying on larger field sizes and homogeneous landscapes result in land degradation, biodiversity losses, and impaired ecosystem services, particularly regulating services such as water and climate regulation. A multifunctional landscape composition and configuration promises higher ecosystem functionality by balancing ecological and economic provisioning functionality for food, fuel, and fiber. However, to the best of our knowledge, not much is known about the synergies and trade-offs of different landscape compositions and configurations and landscape designs providing ecosystem functionality in economic and ecological dimensions.</p></div><div><h3>OBJECTIVE</h3><p>We addressed the question whether the ecosystem functionality of agricultural landscapes can be improved at given levels of economic valuation. We quantified potential improvements of ecosystem functionality through multifunctional landscape composition and configuration. We identified agricultural landscapes that provide high ecosystem functionality at their level of economic valuation, given that such regions may serve as role models for a target landscape composition.</p></div><div><h3>METHODS</h3><p>Using an eco-efficiency approach based on the non-parametric order<em>-m</em> estimator, we quantified potential improvements of ecosystem functionality at the agricultural landscapes scale. We used the 20 km<sup>2</sup> hexagonal grid level in the Federal State of North Rhine-Westphalia, Germany. We described landscape composition and configuration using spatially explicit land cover data from the Integrated Administration and Control System (IACS); land value data indicated the economic output of the landscape. We investigated robustness of our results under different grid specifications (10–50 km<sup>2</sup>) and using subsamples of regions with similar environmental conditions.</p></div><div><h3>RESULTS AND CONCLUSIONS</h3><p>We found on average high eco-efficiency of agricultural landscapes in the study region. We also found notable improvement potentials in at least one ecological indicator that were spatially clustered. The results suggest the potential for Pareto improvements, i.e., increasing landscape eco-efficiency without sacrificing economic outputs.</p></div><div><h3>SIGNIFICANCE</h3><p>We present a novel empirical approach to evaluate the eco-efficiency of agricultural landscapes and investigate spatial patterns of eco-efficiency at the landscape scale. We modeled landscapes' potential multifunctionality at a fine regional scale using indicators for landscape composition and configuration based on spatially explicit and highly granular land use and land management data. We relied on publicly available data, and our approach can serve to develop monitoring or policy evaluation at the landscape scale.</p></div>\",\"PeriodicalId\":7730,\"journal\":{\"name\":\"Agricultural Systems\",\"volume\":\"220 \",\"pages\":\"Article 104062\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0308521X24002129/pdfft?md5=c2c4557572656a5ff7599d68ca62cbe9&pid=1-s2.0-S0308521X24002129-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Systems\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308521X24002129\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Systems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308521X24002129","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Eco-efficiency in the agricultural landscape of North Rhine-Westphalia, Germany
CONTEXT
Intensified agricultural production systems relying on larger field sizes and homogeneous landscapes result in land degradation, biodiversity losses, and impaired ecosystem services, particularly regulating services such as water and climate regulation. A multifunctional landscape composition and configuration promises higher ecosystem functionality by balancing ecological and economic provisioning functionality for food, fuel, and fiber. However, to the best of our knowledge, not much is known about the synergies and trade-offs of different landscape compositions and configurations and landscape designs providing ecosystem functionality in economic and ecological dimensions.
OBJECTIVE
We addressed the question whether the ecosystem functionality of agricultural landscapes can be improved at given levels of economic valuation. We quantified potential improvements of ecosystem functionality through multifunctional landscape composition and configuration. We identified agricultural landscapes that provide high ecosystem functionality at their level of economic valuation, given that such regions may serve as role models for a target landscape composition.
METHODS
Using an eco-efficiency approach based on the non-parametric order-m estimator, we quantified potential improvements of ecosystem functionality at the agricultural landscapes scale. We used the 20 km2 hexagonal grid level in the Federal State of North Rhine-Westphalia, Germany. We described landscape composition and configuration using spatially explicit land cover data from the Integrated Administration and Control System (IACS); land value data indicated the economic output of the landscape. We investigated robustness of our results under different grid specifications (10–50 km2) and using subsamples of regions with similar environmental conditions.
RESULTS AND CONCLUSIONS
We found on average high eco-efficiency of agricultural landscapes in the study region. We also found notable improvement potentials in at least one ecological indicator that were spatially clustered. The results suggest the potential for Pareto improvements, i.e., increasing landscape eco-efficiency without sacrificing economic outputs.
SIGNIFICANCE
We present a novel empirical approach to evaluate the eco-efficiency of agricultural landscapes and investigate spatial patterns of eco-efficiency at the landscape scale. We modeled landscapes' potential multifunctionality at a fine regional scale using indicators for landscape composition and configuration based on spatially explicit and highly granular land use and land management data. We relied on publicly available data, and our approach can serve to develop monitoring or policy evaluation at the landscape scale.
期刊介绍:
Agricultural Systems is an international journal that deals with interactions - among the components of agricultural systems, among hierarchical levels of agricultural systems, between agricultural and other land use systems, and between agricultural systems and their natural, social and economic environments.
The scope includes the development and application of systems analysis methodologies in the following areas:
Systems approaches in the sustainable intensification of agriculture; pathways for sustainable intensification; crop-livestock integration; farm-level resource allocation; quantification of benefits and trade-offs at farm to landscape levels; integrative, participatory and dynamic modelling approaches for qualitative and quantitative assessments of agricultural systems and decision making;
The interactions between agricultural and non-agricultural landscapes; the multiple services of agricultural systems; food security and the environment;
Global change and adaptation science; transformational adaptations as driven by changes in climate, policy, values and attitudes influencing the design of farming systems;
Development and application of farming systems design tools and methods for impact, scenario and case study analysis; managing the complexities of dynamic agricultural systems; innovation systems and multi stakeholder arrangements that support or promote change and (or) inform policy decisions.