快速傅里叶变换周期插值法,用于周期性单元格中的叠加和

IF 7.2 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer Physics Communications Pub Date : 2024-06-27 DOI:10.1016/j.cpc.2024.109291
{"title":"快速傅里叶变换周期插值法,用于周期性单元格中的叠加和","authors":"","doi":"10.1016/j.cpc.2024.109291","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a Fast Fourier Transform based Periodic Interpolation Method (FFT-PIM), a flexible and computationally efficient approach for computing the scalar potential given by a superposition sum in a unit cell of an infinitely periodic array. Under the same umbrella, FFT-PIM allows computing the potential for 1D, 2D, and 3D periodicities for dynamic problems involving the Helmholtz potential and static problems involving Coulomb potential, including problems with and without a periodic phase shift. The computational complexity of the FFT-PIM is of <span><math><mi>O</mi><mo>(</mo><mi>N</mi><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></math></span> for <em>N</em> spatially coinciding sources and observer points. The FFT-PIM uses rapidly converging series representations of the Green's function serving as a kernel in the superposition sum. Based on these representations, the FFT-PIM splits the potential into its near-zone component, which includes a small number of images surrounding the unit cell of interest, and far-zone component, which includes the rest of an infinite number of images. The far-zone component is evaluated by projecting the non-uniform sources onto a sparse uniform grid, performing superposition sums on this sparse grid, and interpolating the potential from the uniform grid to the non-uniform observation points. The near-zone component is evaluated using an FFT-based method, which is adapted to efficiently handle non-uniform source-observer distributions within the periodic unit cell. The FFT-PIM can be used for a broad range of applications, such as periodic problems involving integral equations for wave propagation in electromagnetics and acoustics, micromagnetic solvers, and density functional theory solvers.</p></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010465524002145/pdfft?md5=23d356ca2f300c3da1f4f8e8b1608506&pid=1-s2.0-S0010465524002145-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fast Fourier Transform periodic interpolation method for superposition sums in a periodic unit cell\",\"authors\":\"\",\"doi\":\"10.1016/j.cpc.2024.109291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a Fast Fourier Transform based Periodic Interpolation Method (FFT-PIM), a flexible and computationally efficient approach for computing the scalar potential given by a superposition sum in a unit cell of an infinitely periodic array. Under the same umbrella, FFT-PIM allows computing the potential for 1D, 2D, and 3D periodicities for dynamic problems involving the Helmholtz potential and static problems involving Coulomb potential, including problems with and without a periodic phase shift. The computational complexity of the FFT-PIM is of <span><math><mi>O</mi><mo>(</mo><mi>N</mi><mi>log</mi><mo>⁡</mo><mi>N</mi><mo>)</mo></math></span> for <em>N</em> spatially coinciding sources and observer points. The FFT-PIM uses rapidly converging series representations of the Green's function serving as a kernel in the superposition sum. Based on these representations, the FFT-PIM splits the potential into its near-zone component, which includes a small number of images surrounding the unit cell of interest, and far-zone component, which includes the rest of an infinite number of images. The far-zone component is evaluated by projecting the non-uniform sources onto a sparse uniform grid, performing superposition sums on this sparse grid, and interpolating the potential from the uniform grid to the non-uniform observation points. The near-zone component is evaluated using an FFT-based method, which is adapted to efficiently handle non-uniform source-observer distributions within the periodic unit cell. The FFT-PIM can be used for a broad range of applications, such as periodic problems involving integral equations for wave propagation in electromagnetics and acoustics, micromagnetic solvers, and density functional theory solvers.</p></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002145/pdfft?md5=23d356ca2f300c3da1f4f8e8b1608506&pid=1-s2.0-S0010465524002145-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465524002145\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465524002145","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了基于快速傅立叶变换的周期插值法(FFT-PIM),这是一种灵活、计算效率高的方法,用于计算无限周期阵列单元格中叠加和给出的标量势。在同一框架下,FFT-PIM 可以计算涉及亥姆霍兹势的动态问题和涉及库仑势的静态问题的一维、二维和三维周期势,包括有周期相移和无周期相移的问题。对于 N 个空间重合的源点和观测点,FFT-PIM 的计算复杂度为 O(NlogN)。FFT-PIM 使用快速收敛的格林函数序列表示作为叠加和的核。基于这些表示法,FFT-PIM 将势能分为近区分量和远区分量,前者包括感兴趣的单元格周围的少量图像,后者包括无限多图像的其余部分。评估远区部分的方法是将非均匀源投影到稀疏的均匀网格上,在该稀疏网格上进行叠加求和,然后将电势从均匀网格插值到非均匀观测点。近区分量采用基于 FFT 的方法进行评估,该方法可有效处理周期性单元格内的非均匀源观测点分布。FFT-PIM 可用于广泛的应用领域,如涉及电磁学和声学中波传播积分方程的周期性问题、微磁求解器和密度泛函理论求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Fourier Transform periodic interpolation method for superposition sums in a periodic unit cell

We propose a Fast Fourier Transform based Periodic Interpolation Method (FFT-PIM), a flexible and computationally efficient approach for computing the scalar potential given by a superposition sum in a unit cell of an infinitely periodic array. Under the same umbrella, FFT-PIM allows computing the potential for 1D, 2D, and 3D periodicities for dynamic problems involving the Helmholtz potential and static problems involving Coulomb potential, including problems with and without a periodic phase shift. The computational complexity of the FFT-PIM is of O(NlogN) for N spatially coinciding sources and observer points. The FFT-PIM uses rapidly converging series representations of the Green's function serving as a kernel in the superposition sum. Based on these representations, the FFT-PIM splits the potential into its near-zone component, which includes a small number of images surrounding the unit cell of interest, and far-zone component, which includes the rest of an infinite number of images. The far-zone component is evaluated by projecting the non-uniform sources onto a sparse uniform grid, performing superposition sums on this sparse grid, and interpolating the potential from the uniform grid to the non-uniform observation points. The near-zone component is evaluated using an FFT-based method, which is adapted to efficiently handle non-uniform source-observer distributions within the periodic unit cell. The FFT-PIM can be used for a broad range of applications, such as periodic problems involving integral equations for wave propagation in electromagnetics and acoustics, micromagnetic solvers, and density functional theory solvers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Physics Communications
Computer Physics Communications 物理-计算机:跨学科应用
CiteScore
12.10
自引率
3.20%
发文量
287
审稿时长
5.3 months
期刊介绍: The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper. Computer Programs in Physics (CPiP) These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged. Computational Physics Papers (CP) These are research papers in, but are not limited to, the following themes across computational physics and related disciplines. mathematical and numerical methods and algorithms; computational models including those associated with the design, control and analysis of experiments; and algebraic computation. Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.
期刊最新文献
Computing the QRPA level density with the finite amplitude method An analysis and successful benchmarking of the Chapman-Enskog-like (CEL) continuum kinetic closure approach algorithm in NIMROD TROPIC: A program for calculating reduced transition probabilities ftint: Calculating gradient-flow integrals with pySecDec Analytic continuations and numerical evaluation of the Appell F1, F3, Lauricella FD(3) and Lauricella-Saran FS(3) and their application to Feynman integrals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1