通过密度泛函理论和机器学习合理设计用于 NO-NH3 转化的铂锚定单原子合金电催化剂

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-07-01 DOI:10.1016/S1872-2067(24)60078-1
Jieyu Liu , Haiqiang Guo , Yulin Xiong , Xing Chen , Yifu Yu , Changhong Wang
{"title":"通过密度泛函理论和机器学习合理设计用于 NO-NH3 转化的铂锚定单原子合金电催化剂","authors":"Jieyu Liu ,&nbsp;Haiqiang Guo ,&nbsp;Yulin Xiong ,&nbsp;Xing Chen ,&nbsp;Yifu Yu ,&nbsp;Changhong Wang","doi":"10.1016/S1872-2067(24)60078-1","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical NO reduction reaction (NORR) toward NH<sub>3</sub> synthesis emerges as a promising approach to eliminate NO pollution and generate high-value-added products simultaneously. Therefore, exploring suitable NORR electrocatalysts is of great importance. Here, we present a design principle to evaluate the activity of single-atom alloy catalysts (SAACs), whose excellent catalytic performance and well-defined bonding environments make them suitable candidates for studying structure-activity relationships. The machine learning (ML) algorithm is chosen to unveil the underlying physics and chemistry. The results indicate that the catalytic activity of SAACs is highly correlated with the local environment of the active center, that is, the atomic and electronic features. The coeffect of these features is quantitatively verified by adopting a data-driven method. The combination of density functional theory (DFT) and ML investigations not only provides an understanding of the complex NORR mechanisms but also offers a strategy to design highly efficient SAACs with specific active centers rationally.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"62 ","pages":"Pages 243-253"},"PeriodicalIF":15.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of Pt-anchored single-atom alloy electrocatalysts for NO-to-NH3 conversion by density functional theory and machine learning\",\"authors\":\"Jieyu Liu ,&nbsp;Haiqiang Guo ,&nbsp;Yulin Xiong ,&nbsp;Xing Chen ,&nbsp;Yifu Yu ,&nbsp;Changhong Wang\",\"doi\":\"10.1016/S1872-2067(24)60078-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical NO reduction reaction (NORR) toward NH<sub>3</sub> synthesis emerges as a promising approach to eliminate NO pollution and generate high-value-added products simultaneously. Therefore, exploring suitable NORR electrocatalysts is of great importance. Here, we present a design principle to evaluate the activity of single-atom alloy catalysts (SAACs), whose excellent catalytic performance and well-defined bonding environments make them suitable candidates for studying structure-activity relationships. The machine learning (ML) algorithm is chosen to unveil the underlying physics and chemistry. The results indicate that the catalytic activity of SAACs is highly correlated with the local environment of the active center, that is, the atomic and electronic features. The coeffect of these features is quantitatively verified by adopting a data-driven method. The combination of density functional theory (DFT) and ML investigations not only provides an understanding of the complex NORR mechanisms but also offers a strategy to design highly efficient SAACs with specific active centers rationally.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":\"62 \",\"pages\":\"Pages 243-253\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724600781\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600781","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为合成 NH3 而进行的电化学 NO 还原反应(NORR)是消除 NO 污染并同时生成高附加值产品的一种前景广阔的方法。因此,探索合适的 NORR 电催化剂非常重要。单原子合金催化剂(SAACs)具有优异的催化性能和明确的键合环境,是研究结构-活性关系的合适候选材料,在此,我们提出了一种评估单原子合金催化剂(SAACs)活性的设计原理。研究选择了机器学习(ML)算法来揭示其背后的物理和化学原理。结果表明,SAACs 的催化活性与活性中心的局部环境,即原子和电子特征高度相关。采用数据驱动方法定量验证了这些特征的协同效应。密度泛函理论(DFT)与 ML 研究的结合不仅有助于理解复杂的 NORR 机理,还为合理设计具有特定活性中心的高效 SAAC 提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational design of Pt-anchored single-atom alloy electrocatalysts for NO-to-NH3 conversion by density functional theory and machine learning

Electrochemical NO reduction reaction (NORR) toward NH3 synthesis emerges as a promising approach to eliminate NO pollution and generate high-value-added products simultaneously. Therefore, exploring suitable NORR electrocatalysts is of great importance. Here, we present a design principle to evaluate the activity of single-atom alloy catalysts (SAACs), whose excellent catalytic performance and well-defined bonding environments make them suitable candidates for studying structure-activity relationships. The machine learning (ML) algorithm is chosen to unveil the underlying physics and chemistry. The results indicate that the catalytic activity of SAACs is highly correlated with the local environment of the active center, that is, the atomic and electronic features. The coeffect of these features is quantitatively verified by adopting a data-driven method. The combination of density functional theory (DFT) and ML investigations not only provides an understanding of the complex NORR mechanisms but also offers a strategy to design highly efficient SAACs with specific active centers rationally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Mechanism study on the influence of surface properties on the synthesis of dimethyl carbonate from CO2 and methanol over ceria catalysts Efficient electrocatalytic urea synthesis from CO2 and nitrate over the scale-up produced FeNi alloy-decorated nanoporous carbon Unraveling the roles of atomically-dispersed Au in boosting photocatalytic CO2 reduction and aryl alcohol oxidation Interfacial coordination bonds accelerate charge separation for unprecedented hydrogen evolution over S-scheme heterojunction Activating d10 electronic configuration to regulate p-band centers as efficient active sites for solar energy conversion into H2 by surface atomic arrangement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1