{"title":"用于工业流程数据驱动质量预测建模的深度残差 PLS","authors":"Xiaofeng Yuan;Weiwei Xu;Yalin Wang;Chunhua Yang;Weihua Gui","doi":"10.1109/JAS.2024.124578","DOIUrl":null,"url":null,"abstract":"Partial least squares (PLS) model is the most typical data-driven method for quality-related industrial tasks like soft sensor. However, only linear relations are captured between the input and output data in the PLS. It is difficult to obtain the remaining nonlinear information in the residual subspaces, which may deteriorate the prediction performance in complex industrial processes. To fully utilize data information in PLS residual subspaces, a deep residual PLS (DRPLS) framework is proposed for quality prediction in this paper. Inspired by deep learning, DRPLS is designed by stacking a number of PLSs successively, in which the input residuals of the previous PLS are used as the layer connection. To enhance representation, nonlinear function is applied to the input residuals before using them for stacking highlevel PLS. For each PLS, the output parts are just the output residuals from its previous PLS. Finally, the output prediction is obtained by adding the results of each PLS. The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 8","pages":"1777-1785"},"PeriodicalIF":15.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Residual PLS for Data-Driven Quality Prediction Modeling in Industrial Process\",\"authors\":\"Xiaofeng Yuan;Weiwei Xu;Yalin Wang;Chunhua Yang;Weihua Gui\",\"doi\":\"10.1109/JAS.2024.124578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Partial least squares (PLS) model is the most typical data-driven method for quality-related industrial tasks like soft sensor. However, only linear relations are captured between the input and output data in the PLS. It is difficult to obtain the remaining nonlinear information in the residual subspaces, which may deteriorate the prediction performance in complex industrial processes. To fully utilize data information in PLS residual subspaces, a deep residual PLS (DRPLS) framework is proposed for quality prediction in this paper. Inspired by deep learning, DRPLS is designed by stacking a number of PLSs successively, in which the input residuals of the previous PLS are used as the layer connection. To enhance representation, nonlinear function is applied to the input residuals before using them for stacking highlevel PLS. For each PLS, the output parts are just the output residuals from its previous PLS. Finally, the output prediction is obtained by adding the results of each PLS. The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 8\",\"pages\":\"1777-1785\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605725/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605725/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
A Deep Residual PLS for Data-Driven Quality Prediction Modeling in Industrial Process
Partial least squares (PLS) model is the most typical data-driven method for quality-related industrial tasks like soft sensor. However, only linear relations are captured between the input and output data in the PLS. It is difficult to obtain the remaining nonlinear information in the residual subspaces, which may deteriorate the prediction performance in complex industrial processes. To fully utilize data information in PLS residual subspaces, a deep residual PLS (DRPLS) framework is proposed for quality prediction in this paper. Inspired by deep learning, DRPLS is designed by stacking a number of PLSs successively, in which the input residuals of the previous PLS are used as the layer connection. To enhance representation, nonlinear function is applied to the input residuals before using them for stacking highlevel PLS. For each PLS, the output parts are just the output residuals from its previous PLS. Finally, the output prediction is obtained by adding the results of each PLS. The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.