{"title":"使用随机通信协议对传感器饱和及欺骗攻击的非线性系统进行分布式故障估计","authors":"Weiwei Sun;Xinci Gao;Lusong Ding;Xiangyu Chen","doi":"10.1109/JAS.2023.124161","DOIUrl":null,"url":null,"abstract":"This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation. For the distributed estimation structure under consideration, an estimation center is not necessary, and the estimator derives its information from itself and neighboring nodes, which fuses the state vector and the measurement vector. In an effort to cut down data conflicts in communication networks, the stochastic communication protocol (SCP) is employed so that the output signals from sensors can be selected. Additionally, a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data. On this basis, sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error. Finally, a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 8","pages":"1865-1876"},"PeriodicalIF":15.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Fault Estimation for Nonlinear Systems With Sensor Saturation and Deception Attacks Using Stochastic Communication Protocols\",\"authors\":\"Weiwei Sun;Xinci Gao;Lusong Ding;Xiangyu Chen\",\"doi\":\"10.1109/JAS.2023.124161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation. For the distributed estimation structure under consideration, an estimation center is not necessary, and the estimator derives its information from itself and neighboring nodes, which fuses the state vector and the measurement vector. In an effort to cut down data conflicts in communication networks, the stochastic communication protocol (SCP) is employed so that the output signals from sensors can be selected. Additionally, a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data. On this basis, sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error. Finally, a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 8\",\"pages\":\"1865-1876\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605727/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605727/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Distributed Fault Estimation for Nonlinear Systems With Sensor Saturation and Deception Attacks Using Stochastic Communication Protocols
This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation. For the distributed estimation structure under consideration, an estimation center is not necessary, and the estimator derives its information from itself and neighboring nodes, which fuses the state vector and the measurement vector. In an effort to cut down data conflicts in communication networks, the stochastic communication protocol (SCP) is employed so that the output signals from sensors can be selected. Additionally, a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data. On this basis, sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error. Finally, a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.