{"title":"基于 MoS2-SiN 集成波导的低功耗、高性能电光调制器","authors":"Jiahao Sun;Jiatong Li;Zhenyuan Shang;Guoqing Wang;Rumin Cheng;Qianrui Huang;Ling Li;Yiwen Sun;Peiguang Yan;Junle Qu","doi":"10.1109/JSTQE.2024.3414173","DOIUrl":null,"url":null,"abstract":"Two-dimensional layered materials and low-loss, high-quality on-chip functional devices formed by optical waveguides have received widespread attention in the field of integrated photonics. In this work, we demonstrate an electro-optic modulator based on Mach-Zehnder interference (MZI) for the first time, which is integrated with MoS2. The ionic liquid is directly cover the surface of the MoS2-SiN waveguide device to form a capacitor structure Due to the outstanding electro-refractive and electro-absorption properties of MoS2, the phase modulation efficiency obtained by adjusting the voltage on the long and short arms is 445 pm/V, the maximum phase change is 1.14π, the half-wave voltage length product VπL is 0.11 V·cm, and the maximum effective refractive index offset is 2.93 × 10\n<sup>−3</sup>\n RIU. Notably, we can achieve a wavelength shift of 1780 nm and an electro-optic response bandwidth exceeding 8.5 GHz at voltage saturation. The proposed electro-optic modulator is expected to be applied to low-loss, high-performance large-scale photonic integrated systems.","PeriodicalId":13094,"journal":{"name":"IEEE Journal of Selected Topics in Quantum Electronics","volume":"30 4: Adv. Mod. and Int. beyond Si and InP-based Plt.","pages":"1-7"},"PeriodicalIF":4.3000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Power, High-Performance Electro-Optic Modulator Based on MoS2-SiN Integrated Waveguide\",\"authors\":\"Jiahao Sun;Jiatong Li;Zhenyuan Shang;Guoqing Wang;Rumin Cheng;Qianrui Huang;Ling Li;Yiwen Sun;Peiguang Yan;Junle Qu\",\"doi\":\"10.1109/JSTQE.2024.3414173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional layered materials and low-loss, high-quality on-chip functional devices formed by optical waveguides have received widespread attention in the field of integrated photonics. In this work, we demonstrate an electro-optic modulator based on Mach-Zehnder interference (MZI) for the first time, which is integrated with MoS2. The ionic liquid is directly cover the surface of the MoS2-SiN waveguide device to form a capacitor structure Due to the outstanding electro-refractive and electro-absorption properties of MoS2, the phase modulation efficiency obtained by adjusting the voltage on the long and short arms is 445 pm/V, the maximum phase change is 1.14π, the half-wave voltage length product VπL is 0.11 V·cm, and the maximum effective refractive index offset is 2.93 × 10\\n<sup>−3</sup>\\n RIU. Notably, we can achieve a wavelength shift of 1780 nm and an electro-optic response bandwidth exceeding 8.5 GHz at voltage saturation. The proposed electro-optic modulator is expected to be applied to low-loss, high-performance large-scale photonic integrated systems.\",\"PeriodicalId\":13094,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"volume\":\"30 4: Adv. Mod. and Int. beyond Si and InP-based Plt.\",\"pages\":\"1-7\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10556751/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10556751/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Low-Power, High-Performance Electro-Optic Modulator Based on MoS2-SiN Integrated Waveguide
Two-dimensional layered materials and low-loss, high-quality on-chip functional devices formed by optical waveguides have received widespread attention in the field of integrated photonics. In this work, we demonstrate an electro-optic modulator based on Mach-Zehnder interference (MZI) for the first time, which is integrated with MoS2. The ionic liquid is directly cover the surface of the MoS2-SiN waveguide device to form a capacitor structure Due to the outstanding electro-refractive and electro-absorption properties of MoS2, the phase modulation efficiency obtained by adjusting the voltage on the long and short arms is 445 pm/V, the maximum phase change is 1.14π, the half-wave voltage length product VπL is 0.11 V·cm, and the maximum effective refractive index offset is 2.93 × 10
−3
RIU. Notably, we can achieve a wavelength shift of 1780 nm and an electro-optic response bandwidth exceeding 8.5 GHz at voltage saturation. The proposed electro-optic modulator is expected to be applied to low-loss, high-performance large-scale photonic integrated systems.
期刊介绍:
Papers published in the IEEE Journal of Selected Topics in Quantum Electronics fall within the broad field of science and technology of quantum electronics of a device, subsystem, or system-oriented nature. Each issue is devoted to a specific topic within this broad spectrum. Announcements of the topical areas planned for future issues, along with deadlines for receipt of manuscripts, are published in this Journal and in the IEEE Journal of Quantum Electronics. Generally, the scope of manuscripts appropriate to this Journal is the same as that for the IEEE Journal of Quantum Electronics. Manuscripts are published that report original theoretical and/or experimental research results that advance the scientific and technological base of quantum electronics devices, systems, or applications. The Journal is dedicated toward publishing research results that advance the state of the art or add to the understanding of the generation, amplification, modulation, detection, waveguiding, or propagation characteristics of coherent electromagnetic radiation having sub-millimeter and shorter wavelengths. In order to be suitable for publication in this Journal, the content of manuscripts concerned with subject-related research must have a potential impact on advancing the technological base of quantum electronic devices, systems, and/or applications. Potential authors of subject-related research have the responsibility of pointing out this potential impact. System-oriented manuscripts must be concerned with systems that perform a function previously unavailable or that outperform previously established systems that did not use quantum electronic components or concepts. Tutorial and review papers are by invitation only.