{"title":"基于约束分离的进化多任务处理,用于受约束的多目标优化问题","authors":"Kangjia Qiao;Jing Liang;Kunjie Yu;Xuanxuan Ban;Caitong Yue;Boyang Qu;Ponnuthurai Nagaratnam Suganthan","doi":"10.1109/JAS.2024.124545","DOIUrl":null,"url":null,"abstract":"Constrained multi-objective optimization problems (CMOPs) generally contain multiple constraints, which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions, thus they propose serious challenges for solvers. Among all constraints, some constraints are highly correlated with optimal feasible regions; thus they can provide effective help to find feasible Pareto front. However, most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints, and do not consider judging the relations among constraints and do not utilize the information from promising single constraints. Therefore, this paper attempts to identify promising single constraints and utilize them to help solve CMOPs. To be specific, a CMOP is transformed into a multi-tasking optimization problem, where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively. Besides, an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships. Moreover, an improved tentative method is designed to find and transfer useful knowledge among tasks. Experimental results on three benchmark test suites and 11 real-world problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 8","pages":"1819-1835"},"PeriodicalIF":15.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems\",\"authors\":\"Kangjia Qiao;Jing Liang;Kunjie Yu;Xuanxuan Ban;Caitong Yue;Boyang Qu;Ponnuthurai Nagaratnam Suganthan\",\"doi\":\"10.1109/JAS.2024.124545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constrained multi-objective optimization problems (CMOPs) generally contain multiple constraints, which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions, thus they propose serious challenges for solvers. Among all constraints, some constraints are highly correlated with optimal feasible regions; thus they can provide effective help to find feasible Pareto front. However, most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints, and do not consider judging the relations among constraints and do not utilize the information from promising single constraints. Therefore, this paper attempts to identify promising single constraints and utilize them to help solve CMOPs. To be specific, a CMOP is transformed into a multi-tasking optimization problem, where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively. Besides, an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships. Moreover, an improved tentative method is designed to find and transfer useful knowledge among tasks. Experimental results on three benchmark test suites and 11 real-world problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 8\",\"pages\":\"1819-1835\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605756/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605756/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Constraints Separation Based Evolutionary Multitasking for Constrained Multi-Objective Optimization Problems
Constrained multi-objective optimization problems (CMOPs) generally contain multiple constraints, which not only form multiple discrete feasible regions but also reduce the size of optimal feasible regions, thus they propose serious challenges for solvers. Among all constraints, some constraints are highly correlated with optimal feasible regions; thus they can provide effective help to find feasible Pareto front. However, most of the existing constrained multi-objective evolutionary algorithms tackle constraints by regarding all constraints as a whole or directly ignoring all constraints, and do not consider judging the relations among constraints and do not utilize the information from promising single constraints. Therefore, this paper attempts to identify promising single constraints and utilize them to help solve CMOPs. To be specific, a CMOP is transformed into a multi-tasking optimization problem, where multiple auxiliary tasks are created to search for the Pareto fronts that only consider a single constraint respectively. Besides, an auxiliary task priority method is designed to identify and retain some high-related auxiliary tasks according to the information of relative positions and dominance relationships. Moreover, an improved tentative method is designed to find and transfer useful knowledge among tasks. Experimental results on three benchmark test suites and 11 real-world problems with different numbers of constraints show better or competitive performance of the proposed method when compared with eight state-of-the-art peer methods.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.