利用改进的 SE-UNet 模型进行视网膜血管分割

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Imaging Systems and Technology Pub Date : 2024-07-19 DOI:10.1002/ima.23145
Yibo Wan, Gaofeng Wei, Renxing Li, Yifan Xiang, Dechao Yin, Minglei Yang, Deren Gong, Jiangang Chen
{"title":"利用改进的 SE-UNet 模型进行视网膜血管分割","authors":"Yibo Wan,&nbsp;Gaofeng Wei,&nbsp;Renxing Li,&nbsp;Yifan Xiang,&nbsp;Dechao Yin,&nbsp;Minglei Yang,&nbsp;Deren Gong,&nbsp;Jiangang Chen","doi":"10.1002/ima.23145","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Accurate segmentation of retinal vessels is crucial for the early diagnosis and treatment of eye diseases, for example, diabetic retinopathy, glaucoma, and macular degeneration. Due to the intricate structure of retinal vessels, it is essential to extract their features with precision for the semantic segmentation of medical images. In this study, an improved deep learning neural network was developed with a focus on feature extraction based on the U-Net structure. The enhanced U-Net combines the architecture of convolutional neural networks (CNNs) with SE blocks (squeeze-and-excitation blocks) to adaptively extract image features after each U-Net encoder's convolution. This approach aids in suppressing nonvascular regions and highlighting features for specific segmentation tasks. The proposed method was trained and tested on the DRIVECHASE_DB1 and STARE datasets. As a result, the proposed model had an algorithmic accuracy, sensitivity, specificity, Dice coefficient (Dc), and Matthews correlation coefficient (MCC) of 95.62/0.9853/0.9652, 0.7751/0.7976/0.7773, 0.9832/0.8567/0.9865, 82.53/87.23/83.42, and 0.7823/0.7987/0.8345, respectively, outperforming previous methods, including UNet++, attention U-Net, and ResUNet. The experimental results demonstrated that the proposed method improved the retinal vessel segmentation performance.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retinal Blood Vessels Segmentation With Improved SE-UNet Model\",\"authors\":\"Yibo Wan,&nbsp;Gaofeng Wei,&nbsp;Renxing Li,&nbsp;Yifan Xiang,&nbsp;Dechao Yin,&nbsp;Minglei Yang,&nbsp;Deren Gong,&nbsp;Jiangang Chen\",\"doi\":\"10.1002/ima.23145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Accurate segmentation of retinal vessels is crucial for the early diagnosis and treatment of eye diseases, for example, diabetic retinopathy, glaucoma, and macular degeneration. Due to the intricate structure of retinal vessels, it is essential to extract their features with precision for the semantic segmentation of medical images. In this study, an improved deep learning neural network was developed with a focus on feature extraction based on the U-Net structure. The enhanced U-Net combines the architecture of convolutional neural networks (CNNs) with SE blocks (squeeze-and-excitation blocks) to adaptively extract image features after each U-Net encoder's convolution. This approach aids in suppressing nonvascular regions and highlighting features for specific segmentation tasks. The proposed method was trained and tested on the DRIVECHASE_DB1 and STARE datasets. As a result, the proposed model had an algorithmic accuracy, sensitivity, specificity, Dice coefficient (Dc), and Matthews correlation coefficient (MCC) of 95.62/0.9853/0.9652, 0.7751/0.7976/0.7773, 0.9832/0.8567/0.9865, 82.53/87.23/83.42, and 0.7823/0.7987/0.8345, respectively, outperforming previous methods, including UNet++, attention U-Net, and ResUNet. The experimental results demonstrated that the proposed method improved the retinal vessel segmentation performance.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23145\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

准确分割视网膜血管对于早期诊断和治疗糖尿病视网膜病变、青光眼和黄斑变性等眼科疾病至关重要。由于视网膜血管结构复杂,因此必须精确提取其特征,以便对医学图像进行语义分割。本研究开发了一种改进的深度学习神经网络,重点是基于 U-Net 结构的特征提取。增强型 U-Net 将卷积神经网络(CNN)的架构与 SE 块(挤压-激发块)相结合,在每个 U-Net 编码器卷积后自适应地提取图像特征。这种方法有助于抑制非血管区域,突出特定分割任务的特征。所提出的方法在 DRIVECHASE_DB1 和 STARE 数据集上进行了训练和测试。结果表明,所提模型的算法准确性、灵敏度、特异性、Dice系数(Dc)和马太相关系数(MCC)分别为 95.62/0.9853/0.9652、0.7751/0.7976/0.7773、0.9832/0.8567/0.9865、82.53/87.23/83.42 和 0.7823/0.7987/0.8345,优于以前的方法,包括 UNet++、attention U-Net 和 ResUNet。实验结果表明,所提出的方法提高了视网膜血管的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Retinal Blood Vessels Segmentation With Improved SE-UNet Model

Accurate segmentation of retinal vessels is crucial for the early diagnosis and treatment of eye diseases, for example, diabetic retinopathy, glaucoma, and macular degeneration. Due to the intricate structure of retinal vessels, it is essential to extract their features with precision for the semantic segmentation of medical images. In this study, an improved deep learning neural network was developed with a focus on feature extraction based on the U-Net structure. The enhanced U-Net combines the architecture of convolutional neural networks (CNNs) with SE blocks (squeeze-and-excitation blocks) to adaptively extract image features after each U-Net encoder's convolution. This approach aids in suppressing nonvascular regions and highlighting features for specific segmentation tasks. The proposed method was trained and tested on the DRIVECHASE_DB1 and STARE datasets. As a result, the proposed model had an algorithmic accuracy, sensitivity, specificity, Dice coefficient (Dc), and Matthews correlation coefficient (MCC) of 95.62/0.9853/0.9652, 0.7751/0.7976/0.7773, 0.9832/0.8567/0.9865, 82.53/87.23/83.42, and 0.7823/0.7987/0.8345, respectively, outperforming previous methods, including UNet++, attention U-Net, and ResUNet. The experimental results demonstrated that the proposed method improved the retinal vessel segmentation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
期刊最新文献
Unveiling Cancer: A Data-Driven Approach for Early Identification and Prediction Using F-RUS-RF Model Predicting the Early Detection of Breast Cancer Using Hybrid Machine Learning Systems and Thermographic Imaging CATNet: A Cross Attention and Texture-Aware Network for Polyp Segmentation VMC-UNet: A Vision Mamba-CNN U-Net for Tumor Segmentation in Breast Ultrasound Image Suppression of the Tissue Component With the Total Least-Squares Algorithm to Improve Second Harmonic Imaging of Ultrasound Contrast Agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1