Srinivasa Reddy Tamalampudi, Ghada Dushaq, Solomon M. Serunjogi, Nitul S. Rajput, Mahmoud S. Rasras
{"title":"利用硅光子学中的二维 In4/3P2Se6 集成同时实现光功率不敏感性和非易失性波长微调","authors":"Srinivasa Reddy Tamalampudi, Ghada Dushaq, Solomon M. Serunjogi, Nitul S. Rajput, Mahmoud S. Rasras","doi":"10.1038/s41699-024-00481-w","DOIUrl":null,"url":null,"abstract":"In integrated photonic circuits, microring resonators are essential building blocks but are susceptible to phase errors due to fabrication imperfections and optical power fluctuations. Conventional active phase tuning methods are power-intensive and challenging to integrate into densely packed photonic chips. This study proposes a solution by integrating a thin 2D layer of In4/3P2Se6 (InPSe) onto silicon microring resonators (Si-MRR). This approach mitigates sensitivity to laser power and achieves non-volatile wavelength trimming. Under bias voltage, the device exhibits electro-optic behavior, offering a non-volatile phase trimming rate of −2.62 pm/V to −4.62 pm/V, corresponding to InPSe thicknesses of 45 nm to 120 nm. Low optical losses of 0.0091 to 0.0361 dB/μm were also measured, corresponding to thicknesses of 30 nm to 120 nm. The devices demonstrate stable in-situ resonance wavelength stabilization and bidirectional trimming, ensuring cyclic stability for non-volatile phase control. This advancement enhances the performance of silicon photonics across diverse applications, facilitating high-capacity, high-power operation in compact designs.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-11"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00481-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Simultaneous optical power insensitivity and non-volatile wavelength trimming using 2D In4/3P2Se6 integration in silicon photonics\",\"authors\":\"Srinivasa Reddy Tamalampudi, Ghada Dushaq, Solomon M. Serunjogi, Nitul S. Rajput, Mahmoud S. Rasras\",\"doi\":\"10.1038/s41699-024-00481-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In integrated photonic circuits, microring resonators are essential building blocks but are susceptible to phase errors due to fabrication imperfections and optical power fluctuations. Conventional active phase tuning methods are power-intensive and challenging to integrate into densely packed photonic chips. This study proposes a solution by integrating a thin 2D layer of In4/3P2Se6 (InPSe) onto silicon microring resonators (Si-MRR). This approach mitigates sensitivity to laser power and achieves non-volatile wavelength trimming. Under bias voltage, the device exhibits electro-optic behavior, offering a non-volatile phase trimming rate of −2.62 pm/V to −4.62 pm/V, corresponding to InPSe thicknesses of 45 nm to 120 nm. Low optical losses of 0.0091 to 0.0361 dB/μm were also measured, corresponding to thicknesses of 30 nm to 120 nm. The devices demonstrate stable in-situ resonance wavelength stabilization and bidirectional trimming, ensuring cyclic stability for non-volatile phase control. This advancement enhances the performance of silicon photonics across diverse applications, facilitating high-capacity, high-power operation in compact designs.\",\"PeriodicalId\":19227,\"journal\":{\"name\":\"npj 2D Materials and Applications\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41699-024-00481-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj 2D Materials and Applications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41699-024-00481-w\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00481-w","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Simultaneous optical power insensitivity and non-volatile wavelength trimming using 2D In4/3P2Se6 integration in silicon photonics
In integrated photonic circuits, microring resonators are essential building blocks but are susceptible to phase errors due to fabrication imperfections and optical power fluctuations. Conventional active phase tuning methods are power-intensive and challenging to integrate into densely packed photonic chips. This study proposes a solution by integrating a thin 2D layer of In4/3P2Se6 (InPSe) onto silicon microring resonators (Si-MRR). This approach mitigates sensitivity to laser power and achieves non-volatile wavelength trimming. Under bias voltage, the device exhibits electro-optic behavior, offering a non-volatile phase trimming rate of −2.62 pm/V to −4.62 pm/V, corresponding to InPSe thicknesses of 45 nm to 120 nm. Low optical losses of 0.0091 to 0.0361 dB/μm were also measured, corresponding to thicknesses of 30 nm to 120 nm. The devices demonstrate stable in-situ resonance wavelength stabilization and bidirectional trimming, ensuring cyclic stability for non-volatile phase control. This advancement enhances the performance of silicon photonics across diverse applications, facilitating high-capacity, high-power operation in compact designs.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.