{"title":"G-T 校正:噪声标签下图像分割的改进训练。","authors":"Yun Gao, Junhu Fu, Yi Guo, Yuanyuan Wang","doi":"10.1007/s11517-024-03170-4","DOIUrl":null,"url":null,"abstract":"<p><p>Data-driven medical image segmentation networks require expert annotations, which are hard to obtain. Non-expert annotations are often used instead, but these can be inaccurate (referred to as \"noisy labels\"), misleading the network's training and causing a decline in segmentation performance. In this study, we focus on improving the segmentation performance of neural networks when trained with noisy annotations. Specifically, we propose a two-stage framework named \"G-T correcting,\" consisting of \"G\" stage for recognizing noisy labels and \"T\" stage for correcting noisy labels. In the \"G\" stage, a positive feedback method is proposed to automatically recognize noisy samples, using a Gaussian mixed model to classify clean and noisy labels through the per-sample loss histogram. In the \"T\" stage, a confident correcting strategy and early learning strategy are adopted to allow the segmentation network to receive productive guidance from noisy labels. Experiments on simulated and real-world noisy labels show that this method can achieve over 90% accuracy in recognizing noisy labels, and improve the network's DICE coefficient to 91%. The results demonstrate that the proposed method can enhance the segmentation performance of the network when trained with noisy labels, indicating good clinical application prospects.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3781-3799"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G-T correcting: an improved training of image segmentation under noisy labels.\",\"authors\":\"Yun Gao, Junhu Fu, Yi Guo, Yuanyuan Wang\",\"doi\":\"10.1007/s11517-024-03170-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data-driven medical image segmentation networks require expert annotations, which are hard to obtain. Non-expert annotations are often used instead, but these can be inaccurate (referred to as \\\"noisy labels\\\"), misleading the network's training and causing a decline in segmentation performance. In this study, we focus on improving the segmentation performance of neural networks when trained with noisy annotations. Specifically, we propose a two-stage framework named \\\"G-T correcting,\\\" consisting of \\\"G\\\" stage for recognizing noisy labels and \\\"T\\\" stage for correcting noisy labels. In the \\\"G\\\" stage, a positive feedback method is proposed to automatically recognize noisy samples, using a Gaussian mixed model to classify clean and noisy labels through the per-sample loss histogram. In the \\\"T\\\" stage, a confident correcting strategy and early learning strategy are adopted to allow the segmentation network to receive productive guidance from noisy labels. Experiments on simulated and real-world noisy labels show that this method can achieve over 90% accuracy in recognizing noisy labels, and improve the network's DICE coefficient to 91%. The results demonstrate that the proposed method can enhance the segmentation performance of the network when trained with noisy labels, indicating good clinical application prospects.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"3781-3799\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03170-4\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11517-024-03170-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
G-T correcting: an improved training of image segmentation under noisy labels.
Data-driven medical image segmentation networks require expert annotations, which are hard to obtain. Non-expert annotations are often used instead, but these can be inaccurate (referred to as "noisy labels"), misleading the network's training and causing a decline in segmentation performance. In this study, we focus on improving the segmentation performance of neural networks when trained with noisy annotations. Specifically, we propose a two-stage framework named "G-T correcting," consisting of "G" stage for recognizing noisy labels and "T" stage for correcting noisy labels. In the "G" stage, a positive feedback method is proposed to automatically recognize noisy samples, using a Gaussian mixed model to classify clean and noisy labels through the per-sample loss histogram. In the "T" stage, a confident correcting strategy and early learning strategy are adopted to allow the segmentation network to receive productive guidance from noisy labels. Experiments on simulated and real-world noisy labels show that this method can achieve over 90% accuracy in recognizing noisy labels, and improve the network's DICE coefficient to 91%. The results demonstrate that the proposed method can enhance the segmentation performance of the network when trained with noisy labels, indicating good clinical application prospects.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).