基于界面声子定位的界面热导概论

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Physics Pub Date : 2024-07-18 DOI:10.1016/j.mtphys.2024.101516
Ibrahim Al Keyyam, Xinwei Wang
{"title":"基于界面声子定位的界面热导概论","authors":"Ibrahim Al Keyyam,&nbsp;Xinwei Wang","doi":"10.1016/j.mtphys.2024.101516","DOIUrl":null,"url":null,"abstract":"<div><p>Interfacial energy transport is of great engineering and scientific importance. Traditional theoretical treatment based on phonon reflection and transmission only provides qualitative understanding of the interfacial thermal conductance (<em>G</em>). In the interface region, the material has gradual (covalent) or abrupt (van de Waals) physical structure transition, each transition features interface-region atomic interactions that are different from those of both adjoining sides. This difference makes the interface-region phonons extremely localized. Here, by constructing an “equivalent interfacial medium” (EIM) that accounts for the extremely localized phonon region, <em>G</em> can be described by a universal physical model that is characterized by an “interface characteristic temperature” (<span><math><msub><mi>Θ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span>) and energy carrier transfer time. The EIM model fits widely reported <em>G</em> ∼ <em>T</em> (<em>T</em>: temperature) data with high accuracy and provides remarkable prediction of <em>G</em> at different temperatures based on 2–3 experimental data points. Under normalized temperature (<em>T</em>/<span><math><msub><mi>Θ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span><em>)</em> and interfacial thermal conductance (<em>G</em>/<em>G</em><sub>max</sub>), all literature data of <em>G</em> can be universally grouped to a single curve. The EIM model provides a solid correlation between <em>G</em> and interfacial structure and is expected to significantly advance the physical understanding and design of interfacial energy transport toward high-efficiency energy conversion, transport, and micro/nanoelectronics.</p></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"46 ","pages":"Article 101516"},"PeriodicalIF":10.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalization of interfacial thermal conductance based on interfacial phonon localization\",\"authors\":\"Ibrahim Al Keyyam,&nbsp;Xinwei Wang\",\"doi\":\"10.1016/j.mtphys.2024.101516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Interfacial energy transport is of great engineering and scientific importance. Traditional theoretical treatment based on phonon reflection and transmission only provides qualitative understanding of the interfacial thermal conductance (<em>G</em>). In the interface region, the material has gradual (covalent) or abrupt (van de Waals) physical structure transition, each transition features interface-region atomic interactions that are different from those of both adjoining sides. This difference makes the interface-region phonons extremely localized. Here, by constructing an “equivalent interfacial medium” (EIM) that accounts for the extremely localized phonon region, <em>G</em> can be described by a universal physical model that is characterized by an “interface characteristic temperature” (<span><math><msub><mi>Θ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span>) and energy carrier transfer time. The EIM model fits widely reported <em>G</em> ∼ <em>T</em> (<em>T</em>: temperature) data with high accuracy and provides remarkable prediction of <em>G</em> at different temperatures based on 2–3 experimental data points. Under normalized temperature (<em>T</em>/<span><math><msub><mi>Θ</mi><mrow><mi>i</mi><mi>n</mi><mi>t</mi></mrow></msub></math></span><em>)</em> and interfacial thermal conductance (<em>G</em>/<em>G</em><sub>max</sub>), all literature data of <em>G</em> can be universally grouped to a single curve. The EIM model provides a solid correlation between <em>G</em> and interfacial structure and is expected to significantly advance the physical understanding and design of interfacial energy transport toward high-efficiency energy conversion, transport, and micro/nanoelectronics.</p></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"46 \",\"pages\":\"Article 101516\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529324001925\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324001925","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

界面能量传输具有重要的工程和科学意义。传统的基于声子反射和透射的理论处理方法只能定性地理解界面热导(G)。在界面区域,材料具有渐变(共价)或突变(范德华)的物理结构转变,每种转变都具有不同于相邻两侧的界面区域原子相互作用。这种差异使得界面区声子极为局部化。在这里,通过构建一个 "等效界面介质"(EIM)来解释极度局部化的声子区域,就可以用一个通用物理模型来描述 G,该模型的特征是 "界面特征温度"(Θint)和能量载流子转移时间。EIM 模型高度精确地拟合了广泛报道的 G ∼ T(T:温度)数据,并根据 2-3 个实验数据点对不同温度下的 G 进行了出色的预测。在归一化温度(T/Θint)和界面热导率(G/Gmax)条件下,所有文献中的 G 数据均可归纳为一条曲线。EIM 模型提供了 G 与界面结构之间的可靠相关性,有望极大地促进对界面能量传输的物理理解和设计,从而实现高效的能量转换、传输和微/纳米电子学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalization of interfacial thermal conductance based on interfacial phonon localization

Interfacial energy transport is of great engineering and scientific importance. Traditional theoretical treatment based on phonon reflection and transmission only provides qualitative understanding of the interfacial thermal conductance (G). In the interface region, the material has gradual (covalent) or abrupt (van de Waals) physical structure transition, each transition features interface-region atomic interactions that are different from those of both adjoining sides. This difference makes the interface-region phonons extremely localized. Here, by constructing an “equivalent interfacial medium” (EIM) that accounts for the extremely localized phonon region, G can be described by a universal physical model that is characterized by an “interface characteristic temperature” (Θint) and energy carrier transfer time. The EIM model fits widely reported G ∼ T (T: temperature) data with high accuracy and provides remarkable prediction of G at different temperatures based on 2–3 experimental data points. Under normalized temperature (T/Θint) and interfacial thermal conductance (G/Gmax), all literature data of G can be universally grouped to a single curve. The EIM model provides a solid correlation between G and interfacial structure and is expected to significantly advance the physical understanding and design of interfacial energy transport toward high-efficiency energy conversion, transport, and micro/nanoelectronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
期刊最新文献
Interface Engineering for Minimizing Trapped Charge Density in β-Ga₂O₃ Schottky Barrier Diodes for High-Performance Power Devices Large magnetocaloric effect near liquid hydrogen temperatures in Er1-xTmxGa materials Ultra-soft, foldable, wearable piezoelectric sensor based on the aligned BaTiO3 nanoparticles Mist CVD technology for gallium oxide deposition: A review Atomic Imprint Crystallization: Externally-Templated Crystallization of Amorphous Silicon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1