{"title":"对 \"关于森林和林业部门在瑞典减缓气候变化中的作用 \"的更正","authors":"","doi":"10.1111/gcbb.13180","DOIUrl":null,"url":null,"abstract":"<p>Petersson, H., Ellison, D., Appiah Mensah, A., Berndes, G., Egnell, G., Lundblad, M., Lundmark, T., Lundström, A., Stendahl, J., Wikberg, P-E (2022). On the role of forests and the forest sector for climate change mitigation in Sweden. GCB Bioenergy, 14, 793–813. https://doi.org/10.1111/gcbb.12943</p><p>We wish to inform you that we have come across an error in the stated total amount of fertilized forest land area. In the fertilization scenario (scenario “Increased Fertilization,” Table 1), this area was not approximately 0.2 Mha per year, but rather approximately 1 Mha per year.</p><p>Although this error does not affect the main message of the article, the reader should be informed. We propose the following errata text and apologize for our mistake:</p><p>The current text reads as follows:</p><p>“To study the consequences of increased investments in forestry on net removals in carbon pools and substitution of fossil fuel-based alternatives, we simulate the increased fertilization scenario. This model specification represents a moderate fertilization scenario approximating established fertilization practices on a larger area, but within the legal fertilization guidelines. Established fertilization mainly targets, older, middle-aged Scots pine stands after thinning, around 10 years before final felling (Högberg et al., 2014; Jacobson & Pettersson, 2010). The simulated fertilized area is thus about 200 kha per year or approximately 1% of productive MFL, roughly seven times more fertilization than assumed in the other scenarios. The simulated fertilization thus considers the effect of a one-time addition of 150 kg N/ha (ammonium nitrate). Apart from fertilization, all other parameter settings are identical with the maximum potential harvest scenario.”</p><p>The actual amount assessed was the following:</p><p>“To study the consequences of increased investments in forestry on net removals in carbon pools and the substitution of fossil fuel-based alternatives, we simulate the increased fertilization scenario. The method used to increase production was to simulate the effect of fertilization. Fertilization was allowed to take place on all types of productive forest land. Default prioritization functions (Lämås et al., <span>2023</span>) were used to select which stands were to be fertilized in the simulations, with the following exceptions: fertilization was allowed on the same land every 5 instead of every 10 years, fertilization was also allowed on land with Site Index (at 100 years) higher than 32, and fertilization was also permitted if site productivity was greater than 12 m<sup>3</sup>/ha/year. The amount of fertilized area each year was approximately 4% of the total productive forest area or around 1 million/ha/year. The simulated fertilization thus considers the effect of 150 kg N/ha (ammonium nitrate) for each year of fertilization. Apart from fertilization, all other parameter settings are identical with the maximum potential harvest scenario.”</p><p>The total fertilized area was therefore about 1 million/ha/year and not about 0.2 million/ha/year.</p><p>All references to fertilization in the article refer to this revised/updated specification.</p><p>We apologize for this error.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 8","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13180","citationCount":"0","resultStr":"{\"title\":\"Correction to “On the role of forests and the forest sector for climate change mitigation in Sweden”\",\"authors\":\"\",\"doi\":\"10.1111/gcbb.13180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Petersson, H., Ellison, D., Appiah Mensah, A., Berndes, G., Egnell, G., Lundblad, M., Lundmark, T., Lundström, A., Stendahl, J., Wikberg, P-E (2022). On the role of forests and the forest sector for climate change mitigation in Sweden. GCB Bioenergy, 14, 793–813. https://doi.org/10.1111/gcbb.12943</p><p>We wish to inform you that we have come across an error in the stated total amount of fertilized forest land area. In the fertilization scenario (scenario “Increased Fertilization,” Table 1), this area was not approximately 0.2 Mha per year, but rather approximately 1 Mha per year.</p><p>Although this error does not affect the main message of the article, the reader should be informed. We propose the following errata text and apologize for our mistake:</p><p>The current text reads as follows:</p><p>“To study the consequences of increased investments in forestry on net removals in carbon pools and substitution of fossil fuel-based alternatives, we simulate the increased fertilization scenario. This model specification represents a moderate fertilization scenario approximating established fertilization practices on a larger area, but within the legal fertilization guidelines. Established fertilization mainly targets, older, middle-aged Scots pine stands after thinning, around 10 years before final felling (Högberg et al., 2014; Jacobson & Pettersson, 2010). The simulated fertilized area is thus about 200 kha per year or approximately 1% of productive MFL, roughly seven times more fertilization than assumed in the other scenarios. The simulated fertilization thus considers the effect of a one-time addition of 150 kg N/ha (ammonium nitrate). Apart from fertilization, all other parameter settings are identical with the maximum potential harvest scenario.”</p><p>The actual amount assessed was the following:</p><p>“To study the consequences of increased investments in forestry on net removals in carbon pools and the substitution of fossil fuel-based alternatives, we simulate the increased fertilization scenario. The method used to increase production was to simulate the effect of fertilization. Fertilization was allowed to take place on all types of productive forest land. Default prioritization functions (Lämås et al., <span>2023</span>) were used to select which stands were to be fertilized in the simulations, with the following exceptions: fertilization was allowed on the same land every 5 instead of every 10 years, fertilization was also allowed on land with Site Index (at 100 years) higher than 32, and fertilization was also permitted if site productivity was greater than 12 m<sup>3</sup>/ha/year. The amount of fertilized area each year was approximately 4% of the total productive forest area or around 1 million/ha/year. The simulated fertilization thus considers the effect of 150 kg N/ha (ammonium nitrate) for each year of fertilization. Apart from fertilization, all other parameter settings are identical with the maximum potential harvest scenario.”</p><p>The total fertilized area was therefore about 1 million/ha/year and not about 0.2 million/ha/year.</p><p>All references to fertilization in the article refer to this revised/updated specification.</p><p>We apologize for this error.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13180\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13180\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13180","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Correction to “On the role of forests and the forest sector for climate change mitigation in Sweden”
Petersson, H., Ellison, D., Appiah Mensah, A., Berndes, G., Egnell, G., Lundblad, M., Lundmark, T., Lundström, A., Stendahl, J., Wikberg, P-E (2022). On the role of forests and the forest sector for climate change mitigation in Sweden. GCB Bioenergy, 14, 793–813. https://doi.org/10.1111/gcbb.12943
We wish to inform you that we have come across an error in the stated total amount of fertilized forest land area. In the fertilization scenario (scenario “Increased Fertilization,” Table 1), this area was not approximately 0.2 Mha per year, but rather approximately 1 Mha per year.
Although this error does not affect the main message of the article, the reader should be informed. We propose the following errata text and apologize for our mistake:
The current text reads as follows:
“To study the consequences of increased investments in forestry on net removals in carbon pools and substitution of fossil fuel-based alternatives, we simulate the increased fertilization scenario. This model specification represents a moderate fertilization scenario approximating established fertilization practices on a larger area, but within the legal fertilization guidelines. Established fertilization mainly targets, older, middle-aged Scots pine stands after thinning, around 10 years before final felling (Högberg et al., 2014; Jacobson & Pettersson, 2010). The simulated fertilized area is thus about 200 kha per year or approximately 1% of productive MFL, roughly seven times more fertilization than assumed in the other scenarios. The simulated fertilization thus considers the effect of a one-time addition of 150 kg N/ha (ammonium nitrate). Apart from fertilization, all other parameter settings are identical with the maximum potential harvest scenario.”
The actual amount assessed was the following:
“To study the consequences of increased investments in forestry on net removals in carbon pools and the substitution of fossil fuel-based alternatives, we simulate the increased fertilization scenario. The method used to increase production was to simulate the effect of fertilization. Fertilization was allowed to take place on all types of productive forest land. Default prioritization functions (Lämås et al., 2023) were used to select which stands were to be fertilized in the simulations, with the following exceptions: fertilization was allowed on the same land every 5 instead of every 10 years, fertilization was also allowed on land with Site Index (at 100 years) higher than 32, and fertilization was also permitted if site productivity was greater than 12 m3/ha/year. The amount of fertilized area each year was approximately 4% of the total productive forest area or around 1 million/ha/year. The simulated fertilization thus considers the effect of 150 kg N/ha (ammonium nitrate) for each year of fertilization. Apart from fertilization, all other parameter settings are identical with the maximum potential harvest scenario.”
The total fertilized area was therefore about 1 million/ha/year and not about 0.2 million/ha/year.
All references to fertilization in the article refer to this revised/updated specification.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.