Supreeth Nagendran , Amoghavarsha Mahadevegowda , Sundeep Vema , Mohsen Danaie , Weixin Song , Bo Wen , Caterina Ducati , Clare P. Grey
{"title":"低温富铌 NbWO 青铜中的阳离子排序:高倍率锂离子电池的新阳极","authors":"Supreeth Nagendran , Amoghavarsha Mahadevegowda , Sundeep Vema , Mohsen Danaie , Weixin Song , Bo Wen , Caterina Ducati , Clare P. Grey","doi":"10.1016/j.matt.2024.06.023","DOIUrl":null,"url":null,"abstract":"<div><div>Niobium tungsten oxides are gaining attention as anodes for lithium-ion batteries due to their high volumetric energy storage densities obtained at high cycling rates. Two new niobium tungsten bronze structures, NbWO<sub>5.5</sub> and β-Nb<sub>2</sub>WO<sub>8</sub>, were prepared with microwave-assisted solution-based methods at 800°C. These adopt a simple tetragonal tungsten bronze (TTB) and a √2 × √2 TTB superstructure, respectively. Nb<sub>3</sub>WO<sub>10.5</sub> with a structure closely related to β-Nb<sub>2</sub>WO<sub>8</sub> was formed at higher Nb:W ratios. Nb:W ≥ 4 compositions result in two-phase behavior forming Nb<sub>2</sub>O<sub>5</sub> and Nb<sub>3</sub>WO<sub>10.5</sub>, while W-rich bronzes (Nb:W < 1) exhibited local domains of WO<sub>3</sub> within the NbWO<sub>5.5</sub> lattice. Diffraction and electron microscopy analysis revealed cation ordering in the bronzes at different length scales. The microwave synthesis method produced microporous spheres, with the high-Nb-content phases showing promising high-rate capabilities and long cycle lives, making them suitable for energy-storage applications. The microwave-assisted solution method holds potential for synthesizing complex oxide materials across diverse applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"7 10","pages":"Pages 3567-3586"},"PeriodicalIF":17.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cation ordering in low-temperature niobium-rich NbWO bronzes: New anodes for high-rate Li-ion batteries\",\"authors\":\"Supreeth Nagendran , Amoghavarsha Mahadevegowda , Sundeep Vema , Mohsen Danaie , Weixin Song , Bo Wen , Caterina Ducati , Clare P. Grey\",\"doi\":\"10.1016/j.matt.2024.06.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Niobium tungsten oxides are gaining attention as anodes for lithium-ion batteries due to their high volumetric energy storage densities obtained at high cycling rates. Two new niobium tungsten bronze structures, NbWO<sub>5.5</sub> and β-Nb<sub>2</sub>WO<sub>8</sub>, were prepared with microwave-assisted solution-based methods at 800°C. These adopt a simple tetragonal tungsten bronze (TTB) and a √2 × √2 TTB superstructure, respectively. Nb<sub>3</sub>WO<sub>10.5</sub> with a structure closely related to β-Nb<sub>2</sub>WO<sub>8</sub> was formed at higher Nb:W ratios. Nb:W ≥ 4 compositions result in two-phase behavior forming Nb<sub>2</sub>O<sub>5</sub> and Nb<sub>3</sub>WO<sub>10.5</sub>, while W-rich bronzes (Nb:W < 1) exhibited local domains of WO<sub>3</sub> within the NbWO<sub>5.5</sub> lattice. Diffraction and electron microscopy analysis revealed cation ordering in the bronzes at different length scales. The microwave synthesis method produced microporous spheres, with the high-Nb-content phases showing promising high-rate capabilities and long cycle lives, making them suitable for energy-storage applications. The microwave-assisted solution method holds potential for synthesizing complex oxide materials across diverse applications.</div></div>\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"7 10\",\"pages\":\"Pages 3567-3586\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590238524003424\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238524003424","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Cation ordering in low-temperature niobium-rich NbWO bronzes: New anodes for high-rate Li-ion batteries
Niobium tungsten oxides are gaining attention as anodes for lithium-ion batteries due to their high volumetric energy storage densities obtained at high cycling rates. Two new niobium tungsten bronze structures, NbWO5.5 and β-Nb2WO8, were prepared with microwave-assisted solution-based methods at 800°C. These adopt a simple tetragonal tungsten bronze (TTB) and a √2 × √2 TTB superstructure, respectively. Nb3WO10.5 with a structure closely related to β-Nb2WO8 was formed at higher Nb:W ratios. Nb:W ≥ 4 compositions result in two-phase behavior forming Nb2O5 and Nb3WO10.5, while W-rich bronzes (Nb:W < 1) exhibited local domains of WO3 within the NbWO5.5 lattice. Diffraction and electron microscopy analysis revealed cation ordering in the bronzes at different length scales. The microwave synthesis method produced microporous spheres, with the high-Nb-content phases showing promising high-rate capabilities and long cycle lives, making them suitable for energy-storage applications. The microwave-assisted solution method holds potential for synthesizing complex oxide materials across diverse applications.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.