腹部双能 CT 中低千电子伏虚拟单能图像的深度学习图像重建:中等强度可提供更高的病灶清晰度。

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Acta radiologica Pub Date : 2024-09-01 Epub Date: 2024-07-21 DOI:10.1177/02841851241262765
Jingyu Zhong, Yangfan Hu, Yue Xing, Lingyun Wang, Jianying Li, Wei Lu, Xiaomeng Shi, Defang Ding, Xiang Ge, Huan Zhang, Weiwu Yao
{"title":"腹部双能 CT 中低千电子伏虚拟单能图像的深度学习图像重建:中等强度可提供更高的病灶清晰度。","authors":"Jingyu Zhong, Yangfan Hu, Yue Xing, Lingyun Wang, Jianying Li, Wei Lu, Xiaomeng Shi, Defang Ding, Xiang Ge, Huan Zhang, Weiwu Yao","doi":"10.1177/02841851241262765","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The best settings of deep learning image reconstruction (DLIR) algorithm for abdominal low-kiloelectron volt (keV) virtual monoenergetic imaging (VMI) have not been determined.</p><p><strong>Purpose: </strong>To determine the optimal settings of the DLIR algorithm for abdominal low-keV VMI.</p><p><strong>Material and methods: </strong>The portal-venous phase computed tomography (CT) scans of 109 participants with 152 lesions were reconstructed into four image series: VMI at 50 keV using adaptive statistical iterative reconstruction (Asir-V) at 50% blending (AV-50); and VMI at 40 keV using AV-50 and DLIR at medium (DLIR-M) and high strength (DLIR-H). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of nine anatomical sites were calculated. Noise power spectrum (NPS) using homogenous region of liver, and edge rise slope (ERS) at five edges were measured. Five radiologists rated image quality and diagnostic acceptability, and evaluated the lesion conspicuity.</p><p><strong>Results: </strong>The SNR and CNR values, and noise and noise peak in NPS measurements, were significantly lower in DLIR images than AV-50 images in all anatomical sites (all <i>P</i> < 0.001). The ERS values were significantly higher in 40-keV images than 50-keV images at all edges (all <i>P</i> < 0.001). The differences of the peak and average spatial frequency among the four reconstruction algorithms were significant but relatively small. The 40-keV images were rated higher with DLIR-M than DLIR-H for diagnostic acceptance (<i>P</i> < 0.001) and lesion conspicuity (<i>P</i> = 0.010).</p><p><strong>Conclusion: </strong>DLIR provides lower noise, higher sharpness, and more natural texture to allow 40 keV to be a new standard for routine VMI reconstruction for the abdomen and DLIR-M gains higher diagnostic acceptance and lesion conspicuity rating than DLIR-H.</p>","PeriodicalId":7143,"journal":{"name":"Acta radiologica","volume":" ","pages":"1133-1146"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning image reconstruction for low-kiloelectron volt virtual monoenergetic images in abdominal dual-energy CT: medium strength provides higher lesion conspicuity.\",\"authors\":\"Jingyu Zhong, Yangfan Hu, Yue Xing, Lingyun Wang, Jianying Li, Wei Lu, Xiaomeng Shi, Defang Ding, Xiang Ge, Huan Zhang, Weiwu Yao\",\"doi\":\"10.1177/02841851241262765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The best settings of deep learning image reconstruction (DLIR) algorithm for abdominal low-kiloelectron volt (keV) virtual monoenergetic imaging (VMI) have not been determined.</p><p><strong>Purpose: </strong>To determine the optimal settings of the DLIR algorithm for abdominal low-keV VMI.</p><p><strong>Material and methods: </strong>The portal-venous phase computed tomography (CT) scans of 109 participants with 152 lesions were reconstructed into four image series: VMI at 50 keV using adaptive statistical iterative reconstruction (Asir-V) at 50% blending (AV-50); and VMI at 40 keV using AV-50 and DLIR at medium (DLIR-M) and high strength (DLIR-H). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of nine anatomical sites were calculated. Noise power spectrum (NPS) using homogenous region of liver, and edge rise slope (ERS) at five edges were measured. Five radiologists rated image quality and diagnostic acceptability, and evaluated the lesion conspicuity.</p><p><strong>Results: </strong>The SNR and CNR values, and noise and noise peak in NPS measurements, were significantly lower in DLIR images than AV-50 images in all anatomical sites (all <i>P</i> < 0.001). The ERS values were significantly higher in 40-keV images than 50-keV images at all edges (all <i>P</i> < 0.001). The differences of the peak and average spatial frequency among the four reconstruction algorithms were significant but relatively small. The 40-keV images were rated higher with DLIR-M than DLIR-H for diagnostic acceptance (<i>P</i> < 0.001) and lesion conspicuity (<i>P</i> = 0.010).</p><p><strong>Conclusion: </strong>DLIR provides lower noise, higher sharpness, and more natural texture to allow 40 keV to be a new standard for routine VMI reconstruction for the abdomen and DLIR-M gains higher diagnostic acceptance and lesion conspicuity rating than DLIR-H.</p>\",\"PeriodicalId\":7143,\"journal\":{\"name\":\"Acta radiologica\",\"volume\":\" \",\"pages\":\"1133-1146\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta radiologica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/02841851241262765\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02841851241262765","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景:腹部低千电子伏(keV)虚拟单能成像(VMI)深度学习图像重建(DLIR)算法的最佳设置尚未确定:目的:确定腹部低千伏虚拟单能成像(VMI)的深度学习图像重建(DLIR)算法的最佳设置:将患有 152 个病灶的 109 名参试者的门静脉相计算机断层扫描(CT)重建为四个图像系列:使用自适应统计迭代重建(Asir-V)在 50%混合(AV-50)下重建 50 keV 的 VMI;使用 AV-50 和 DLIR 在中等强度(DLIR-M)和高强度(DLIR-H)下重建 40 keV 的 VMI。计算了九个解剖部位的信噪比(SNR)和对比度-噪声比(CNR)。测量了肝脏同质区域的噪声功率谱(NPS)和五个边缘的边缘上升斜率(ERS)。五位放射科医生对图像质量和诊断可接受性进行评分,并对病变的清晰度进行评估:结果:在所有解剖部位,DLIR 图像的 SNR 和 CNR 值以及 NPS 测量中的噪声和噪声峰值均显著低于 AV-50 图像(所有 P P P P = 0.010):结论:DLIR 提供了更低的噪声、更高的清晰度和更自然的纹理,使 40 keV 成为腹部常规 VMI 重建的新标准,DLIR-M 比 DLIR-H 获得了更高的诊断接受度和病灶清晰度评级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning image reconstruction for low-kiloelectron volt virtual monoenergetic images in abdominal dual-energy CT: medium strength provides higher lesion conspicuity.

Background: The best settings of deep learning image reconstruction (DLIR) algorithm for abdominal low-kiloelectron volt (keV) virtual monoenergetic imaging (VMI) have not been determined.

Purpose: To determine the optimal settings of the DLIR algorithm for abdominal low-keV VMI.

Material and methods: The portal-venous phase computed tomography (CT) scans of 109 participants with 152 lesions were reconstructed into four image series: VMI at 50 keV using adaptive statistical iterative reconstruction (Asir-V) at 50% blending (AV-50); and VMI at 40 keV using AV-50 and DLIR at medium (DLIR-M) and high strength (DLIR-H). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of nine anatomical sites were calculated. Noise power spectrum (NPS) using homogenous region of liver, and edge rise slope (ERS) at five edges were measured. Five radiologists rated image quality and diagnostic acceptability, and evaluated the lesion conspicuity.

Results: The SNR and CNR values, and noise and noise peak in NPS measurements, were significantly lower in DLIR images than AV-50 images in all anatomical sites (all P < 0.001). The ERS values were significantly higher in 40-keV images than 50-keV images at all edges (all P < 0.001). The differences of the peak and average spatial frequency among the four reconstruction algorithms were significant but relatively small. The 40-keV images were rated higher with DLIR-M than DLIR-H for diagnostic acceptance (P < 0.001) and lesion conspicuity (P = 0.010).

Conclusion: DLIR provides lower noise, higher sharpness, and more natural texture to allow 40 keV to be a new standard for routine VMI reconstruction for the abdomen and DLIR-M gains higher diagnostic acceptance and lesion conspicuity rating than DLIR-H.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta radiologica
Acta radiologica 医学-核医学
CiteScore
2.70
自引率
0.00%
发文量
170
审稿时长
3-8 weeks
期刊介绍: Acta Radiologica publishes articles on all aspects of radiology, from clinical radiology to experimental work. It is known for articles based on experimental work and contrast media research, giving priority to scientific original papers. The distinguished international editorial board also invite review articles, short communications and technical and instrumental notes.
期刊最新文献
A diffusion kurtosis imaging study of the relationship between whole brain microstructure and cognitive function in older adults with mild cognitive impairment. Different iron distribution patterns in Parkinson's disease and its motor subtypes: a quantitative susceptibility mapping study. Impact of individually tailored contrast medium on vascular attenuation in chest CT: a randomized controlled trial. Ultrasound-guided thrombin injection for cardiac catheterization pseudoaneurysms: efficacy, safety, and predictors. Development of a nomogram based on whole-tumor multiparametric MRI histogram analysis to predict deep myometrial invasion in stage I endometrioid endometrial carcinoma preoperatively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1