{"title":"人类 MDH 遗传学。","authors":"Adam Haberman, Celeste N Peterson","doi":"10.1042/EBC20230078","DOIUrl":null,"url":null,"abstract":"<p><p>Malate dehydrogenase (MDH) performs key roles in metabolism, but little is known about its function specifically in human health and disease. In this minireview, we describe the incomplete state of our knowledge of human MDH genetics. Humans have three MDH genes with a total of four validated isoforms. MDH1 and MDH2 are widely expressed, while MDH1B is only expressed in a small subset of tissues. Many mutations in MDH1 and MDH2 have been identified in patients, but only a few have been studied to determine what symptoms they cause. MDH1 has been associated with cancer and a neurodevelopmental disorder. MDH2 has been associated with diabetes, neurodevelopmental disorders, and cancer.</p>","PeriodicalId":11812,"journal":{"name":"Essays in biochemistry","volume":" ","pages":"107-119"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetics of MDH in humans.\",\"authors\":\"Adam Haberman, Celeste N Peterson\",\"doi\":\"10.1042/EBC20230078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Malate dehydrogenase (MDH) performs key roles in metabolism, but little is known about its function specifically in human health and disease. In this minireview, we describe the incomplete state of our knowledge of human MDH genetics. Humans have three MDH genes with a total of four validated isoforms. MDH1 and MDH2 are widely expressed, while MDH1B is only expressed in a small subset of tissues. Many mutations in MDH1 and MDH2 have been identified in patients, but only a few have been studied to determine what symptoms they cause. MDH1 has been associated with cancer and a neurodevelopmental disorder. MDH2 has been associated with diabetes, neurodevelopmental disorders, and cancer.</p>\",\"PeriodicalId\":11812,\"journal\":{\"name\":\"Essays in biochemistry\",\"volume\":\" \",\"pages\":\"107-119\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Essays in biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/EBC20230078\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Essays in biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/EBC20230078","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
苹果酸脱氢酶(MDH)在新陈代谢中发挥着关键作用,但人们对它在人类健康和疾病中的具体功能知之甚少。在本小视图中,我们将介绍我们对人类 MDH 遗传学的不完全了解。人类有三个 MDH 基因,共有四种有效的同工酶。MDH1 和 MDH2 广泛表达,而 MDH1B 仅在一小部分组织中表达。已在患者中发现了许多 MDH1 和 MDH2 基因突变的病例,但只有少数病例被研究以确定其导致的症状。MDH1 与癌症和神经发育障碍有关。MDH2 与糖尿病、神经发育障碍和癌症有关。
Malate dehydrogenase (MDH) performs key roles in metabolism, but little is known about its function specifically in human health and disease. In this minireview, we describe the incomplete state of our knowledge of human MDH genetics. Humans have three MDH genes with a total of four validated isoforms. MDH1 and MDH2 are widely expressed, while MDH1B is only expressed in a small subset of tissues. Many mutations in MDH1 and MDH2 have been identified in patients, but only a few have been studied to determine what symptoms they cause. MDH1 has been associated with cancer and a neurodevelopmental disorder. MDH2 has been associated with diabetes, neurodevelopmental disorders, and cancer.
期刊介绍:
Essays in Biochemistry publishes short, digestible reviews from experts highlighting recent key topics in biochemistry and the molecular biosciences. Written to be accessible for those not yet immersed in the subject, each article is an up-to-date, self-contained summary of the topic.
Bridging the gap between the latest research and established textbooks, Essays in Biochemistry will tell you what you need to know to begin exploring the field, as each article includes the top take-home messages as summary points.
Each issue of the journal is guest edited by a key opinion leader in the area, and whether you are continuing your studies or moving into a new research area, the Journal gives a complete picture in one place.
Essays in Biochemistry is proud to publish Understanding Biochemistry, an essential online resource for post-16 students, teachers and undergraduates. Providing up-to-date overviews of key concepts in biochemistry and the molecular biosciences, the Understanding Biochemistry issues of Essays in Biochemistry are published annually in October.